Skip to main content
Log in

Adaptive backstepping control for levitation system with load uncertainties and external disturbances

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore, considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEE H W, KIM K C, LEE J. Review of maglev train technologies [J]. IEEE Transactions on Magnetic, 2006, 42(7): 1917–1925.

    Article  Google Scholar 

  2. LI Jin-hui, LI Jie, ZHANG Geng. A practical robust nonlinear controller for maglev levitation system [J]. Journal of Central South University, 2013, 20(11): 2991–3001.

    Article  Google Scholar 

  3. LIN F J, TENG L T, SHIEH P H. Intelligent adaptive backstepping control system for magnetic levitation apparatus [J]. IEEE Transactions on Magnetic, 2007, 43(5): 2009–2018.

    Article  Google Scholar 

  4. ZHOU Hai-bo, YING Hao, DUAN Ji-an. Adaptive control using interval Type-2 fuzzy logic for uncertain nonlinear systems [J]. Journal of Central South University of Technology, 2011, 18(3): 760–766.

    Article  Google Scholar 

  5. YOON T S, Wang F G, PARK S K, KWAK G P, AHN H K. Linearization of T-S fuzzy systems and robust H∞ control [J]. Journal of Central South University of Technology, 2011, 18(1): 140–145.

    Article  Google Scholar 

  6. LI Yun, LI Jie, ZHANG Geng, TIAN Wen-jing. Disturbance decoupled fault diagnosis for sensor fault of maglev suspension system [J]. Journal of Central South University, 2013, 20(6): 1545–1551.

    Article  Google Scholar 

  7. ZHOU Hai-bo, DUAN Ji-an. Levitation mechanism modeling for maglev transportation system [J]. Journal of Central South University of Technology, 2010, 17(6): 1230–1237.

    Article  Google Scholar 

  8. ZHOU Dan-feng, HANSEN C H, LI Jie. Suppression of maglev vehicle-girder self-excited vibration using a virtual tuned mass damper [J]. Journal of Sound and Vibration, 2011, 330(5): 883–901.

    Article  Google Scholar 

  9. ZHANG Ling-ling, ZHANG Zhi-zhou, HUANG Li-hong. Double Hopf bifurcation of time-delayed feedback control for maglev system [J]. Nonlinear Dynamic, 2012, 69(3): 961–967.

    Article  Google Scholar 

  10. ZHANG Ling-ling, CAMPBELL S A, HUANG Li-hong. Nonlinear analysis of a maglev system with time-delayed feedback control [J]. Physica D, 2011, 240(21): 1761–1770.

    Article  MATH  Google Scholar 

  11. ZHOU Dan-feng, LI Jie, HANSEN C H. Suppression of maglev track-induced self-excited vibration using an adaptive cancellation algorithm [J]. 2011, 44/47: 586–590.

    Google Scholar 

  12. YANG Jun, ZOLOTAS A, CHEN Wen-hua, MICHAIL K, LI Shi-hua. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach [J]. ISA Transactions 2011, 50(3): 389–396.

    Article  Google Scholar 

  13. ZHANG Ling-ling, CAMPBELL S A, HUANG Li-hong. Nonlinear analysis of a maglev system with time-delayed feedback control [J]. Physica D 2011, 240(21): 1761–1770.

    Article  MATH  Google Scholar 

  14. TALOLE S E, KOLHE J, PHADKE S B. Extended -state-observer based control of flexible-Joint system with experimental validation [J]. IEEE Transaction on Industrial Electronics, 2010, 57(4): 1411–1419.

    Article  Google Scholar 

  15. KRSTIĆ M, KANELLAKOPOULLS I, KOKOTOVIĆ P. Nonlinear and adaptive control design [M]. New York, NY: John Wiley and Sons, Inc., 1995.

    Google Scholar 

  16. BANG J S, SHIM H, PARK S K, SEO J H. Robust tracking and vibration suppression for a two inertia system by combining backstepping approach with disturbance observer [J]. IEEE Transaction on Industrial Electronics, 2010, 57(9): 3197–3206.

    Article  Google Scholar 

  17. YAGIZ N, HACIOGLU Y. Backstepping control of a vehicle with active suspensions [J]. Control Engineering Practice, 2008, 16(9): 1457–1467.

    Article  Google Scholar 

  18. YU Yao, ZHONG Yi-sheng. Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients [J]. International Journal of Control, 2010, 83(6): 1182–1192.

    Article  MATH  MathSciNet  Google Scholar 

  19. HUA Chang-chun, LIU P X, GUAN Xin-ping. Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems [J]. IEEE Transaction on Industrial Electronics, 2009, 56(9): 3723–3732.

    Article  Google Scholar 

  20. LIN F J, TENG L T, SHIEH P H. Adaptive backstepping control system for magnetic levitation apparatus using recurrent neural network [J]. IEEE Transaction on Magnetics, 2007, 43(5): 2009–2018.

    Article  Google Scholar 

  21. ALBERT T E, OLESZCZUK G, HANASOGE A M. Stable levitation control of magnetically suspended vehicles with structural flexibility [C]// Proceedings of the 2008 American Control Conference, Washington: ACC, 2008: 4035–4040.

    Chapter  Google Scholar 

  22. LI Yun-gang, CHANG Wen-sen. Cascade control of an EMS maglev vehicle’s levitation control system [J]. ACTA Automatica Sinica, 1999, 25(2): 247–251. (in Chinese)

    Google Scholar 

  23. GUZMAN H. Current loops in a magnetic levitation system [J]. International Journal of Innovative Computing, Information and Control, 2009, 5(5): 1275–1283.

    MathSciNet  Google Scholar 

  24. AGUS T, MUHAMMAD Y, AYMAN H. The use of NNs in MRAC to control nonlinear magnetic levitation system [J]. IEEE International Journal of Symosium on Circuits and System, 2005, 49(4): 3051–3054.

    Google Scholar 

  25. HAN JING-QING. The extended state observer of a class of uncertain systems [J]. Control and Decision, 1995, 10(1).

    Google Scholar 

  26. SHAFIQUE I, LIU P X. PD output feedback control design for industrial robotic manipulators [J]. IEEE/ASME Trans Mechatronics, 2011, 16(1): 187–197.

    Article  Google Scholar 

  27. BERBARDO C, GUILLAUME G, THIERRY M. PD modulation scheme for three-parallel multilevel inverters [J]. IEEE Transaction on Industrial Electronics, 2012, 59(2): 690–700.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li  (李杰).

Additional information

Foundation item: Projects(60404003, 11202230) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jh., Li, J., Yu, Pc. et al. Adaptive backstepping control for levitation system with load uncertainties and external disturbances. J. Cent. South Univ. 21, 4478–4488 (2014). https://doi.org/10.1007/s11771-014-2451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2451-0

Key words

Navigation