Skip to main content
Log in

Adaptive fuzzy backstepping control of static var compensator based on state observer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The robust adaptive fuzzy control problem is investigated for a single machine bus system with static var compensator (SVC). This design does not require that speed of the generator rotor and susceptance of the overall system are measured, and also does not require that the parameters of controlled system are known accurately. The fuzzy logic systems are used to approximate the nonlinear functions of the system, and a fuzzy state observer is designed to estimate the speed of the generator rotor and susceptance. By utilizing the fuzzy state observer, and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB), and the angle of the generator rotor follows a desired value. Simulation results are presented to show the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan, C.P., Sun, Y.Z., Lu, Q.: Nonlinear controller design of SVC by exact linearization method. J. Tsinghua Univ. (Sci. Technol.) 33, 18–24 (1993)

    Google Scholar 

  2. Cai, C.H.: Design of H 2/H guaranteed cost controller for SVC. Electr. Power Sci. Eng. 1, 62–66 (2006)

    Google Scholar 

  3. Mao, J.F., Sun, Y.K., Wu, G.Q., Liu, X.F.: A variable structure robust control method in SVC application for performance improvement. In: Proc. Chinese Contr. Conf., Nantong, vol. 1, pp. 67–70 (2007)

    Google Scholar 

  4. Yan, R., Dong, Z.Y., Saha, T.K., Ma, J.: Nonlinear robust adaptive SVC controller design for power systems. In: Proc. Power Energy Soc. General Meet., Pittsburgh, vol. 1, pp. 1–7 (2008)

    Google Scholar 

  5. Najafi, S.R., Abedi, M., Hosseinian, S.H.: A novel approach to optimal allocation of SVC using genetic algorithms and continuation power flow. In: Proc. IEEE Int., Power Energy Conf., Putra Jaya, vol. 1, pp. 202–206 (2006)

    Google Scholar 

  6. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  7. Li, W.L., Liu, S.R., Jing, Y.W.: Nonlinear robust control based on adaptive backstepping design for static var compensator. In: 23rd Chinese Contr. Conf., Wuxi, pp. 1250–1253 (2004)

    Google Scholar 

  8. Lin, F.J., Shen, P.H., Hsu, S.P.: Adaptive backstepping sliding mode control for linear induction motor drive. IEE Proc., Electr. Power Appl. 149, 184–194 (2002)

    Article  Google Scholar 

  9. Sun, L.Y., Tong, S.C., Liu, Y.: Adaptive backstepping sliding mode control of static var compensator. IEEE Trans. Control Syst. Technol. 19, 1178–1185 (2011)

    Article  Google Scholar 

  10. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  11. Li, H.Y., Liu, H.H., Gao, H.J., Shi, P.: Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 20, 342–357 (2012)

    Article  Google Scholar 

  12. Wang, T., Tong, S.C., Li, Y.M.: Robust adaptive fuzzy control for nonlinear system with dynamic uncertainties based on backstepping. Int. J. Innov. Comput. Inf. Control 5, 2675–2688 (2009)

    Google Scholar 

  13. Li, H.Y., Yu, J., Hilton, C., Liu, H.H.: Adaptive sliding mode control for nonlinJ.ear active suspension systems using T-S fuzzy model. IEEE Trans. Ind. Electron. (2012). doi:10.1109/TIE.2012.2202354

    Google Scholar 

  14. Li, H.Y., Chen, B., Zhou, Q., Qian, W.Y.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39, 94–102 (2009)

    Article  Google Scholar 

  15. Zhou, Q., Shi, P., Lu, J., Xu, S.Y.: Adaptive output feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 972–982 (2011)

    Article  Google Scholar 

  16. Zhou, Q., Shi, P., Xu, S.Y., Li, H.Y.: Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. (2012). doi:10.1109/TFUZZ.2012

    Google Scholar 

  17. Wu, L.G., Ho, D.W.C.: Fuzzy filter design for Itô stochastic systems with application to sensor fault detection. IEEE Trans. Fuzzy Syst. 17, 233–242 (2009)

    Article  Google Scholar 

  18. Wu, L.G., Su, X.J., Shi, P., Qiu, J.B.: Model approximation for discrete-time state-delay systems in the T-S fuzzy framework. IEEE Trans. Fuzzy Syst. 19, 366–378 (2011)

    Article  Google Scholar 

  19. Wu, L.G., Su, X.J., Shi, P., Qiu, J.B.: A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 273–286 (2011)

    Article  Google Scholar 

  20. Li, Y.M., Ren, C.E., Tong, S.C.: Adaptive fuzzy backstepping output feedback control for a class of MIMO time-delay nonlinear systems based on high-gain observer. Nonlinear Dyn. 67, 1175–1191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.M., Ren, C.E., Tong, S.C.: Adaptive fuzzy backstepping output feedback control of nonlinear uncertain time-delay systems based on high-gain filters. Nonlinear Dyn. 69, 781–792 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, B., Liu, X.P., Liu, K.F., Shi, P., Direct, L.C.: Adaptive fuzzy control for nonlinear systems with time-varying delays. Inf. Sci. 180, 776–792 (2010)

    Article  MATH  Google Scholar 

  23. Yu, J.P., Chen, B., Yu, H.S.: Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor. Nonlinear Dyn. 69, 1479–1488 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tong, S.C., Li, Y.M.: Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst. 160, 1749–1764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, Q., Shi, P., Lu, J., Xu, S.Y.: Adaptive output feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 972–982 (2011)

    Article  Google Scholar 

  26. Yu, J.P., Yu, H.S., Chen, B., Gao, J.W., Qin, Y.: Direct adaptive neural control of chaos in the permanent magnet synchronous motor. Nonlinear Dyn. 70, 1879–1887 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wang, H.Q., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67, 2703–2718 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, E., Sungryul, L.: Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its applications to the speed control of a PM synchronous motor. IEEE Trans. Fuzzy Syst. 13, 725–741 (2005)

    Article  Google Scholar 

  29. Zou, A.M., Hou, Z.G.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16, 886–897 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61203008, 61074014, 51179019), the Program for Liaoning Innovative Research Team in University (No. LT2012013), the Program for Liaoning Excellent Talents in University (No. LR2012016), and the Natural Science Foundation of Liaoning Province (No. 20102012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tong, S. & Li, T. Adaptive fuzzy backstepping control of static var compensator based on state observer. Nonlinear Dyn 73, 133–142 (2013). https://doi.org/10.1007/s11071-013-0773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0773-3

Keywords

Navigation