Skip to main content
Log in

First-principles study on mechanical properties of LaMg3 and LaCuMg2

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

With the substitution of part Mg in LaMg3 by Cu, the elastic constants C 11 and C 12 increase while C 44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropic ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the \(\left\langle {1 \bar 1 0} \right\rangle \left( {110} \right)\) slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GUNDE P, HÄNZI A, SOLOGUBENKO A, UGGOWITZER P. High-strength magnesium alloys for degradable implant applications [J]. Materials Science and Engineering A, 2011, 528(3): 1047–1054.

    Article  Google Scholar 

  2. AGHION E, BRONFIN B. Magnesium alloys development towards the 21st century [J]. Materials Science Forum, 2000, 350: 19–30

    Article  Google Scholar 

  3. SONG G L, ATRENS A. Corrosion mechanisms of magnesium alloys [J]. Advanced Engineering Materials, 2000, 1(1): 11–33.

    Google Scholar 

  4. TAO S, NOTTEN P, VAN S R, JANSEN A. First-principles predictions of potential hydrogen storage materials: Nanosized Ti (core)/Mg (shell) hydrides [J]. Physical Review B, 2011, 83(19): 195403.

    Article  Google Scholar 

  5. WRÓBEL J, HECTOR L, WOLF W, SHANG S, LIU Z, KURZYDLOWSKI K. Thermodynamic and mechanical properties of lanthanum-magnesium phases from density functional theory [J]. J Alloy Compd, 2011, 512(1): 296–310.

    Article  Google Scholar 

  6. NAYYERI G, MAHMUDI R, SALEHI F. The microstructure, creep resistance, and high-temperature mechanical properties of Mg-5Sn alloy with Ca and Sb additions, and aging treatment [J]. Materials Science and Engineering A, 2010, 527(21/22): 5353–5359.

    Article  Google Scholar 

  7. OUYANG L Z, QIN F X, ZHU M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1 [J]. Scripta materialia, 2006, 55(12): 1075–1078.

    Article  Google Scholar 

  8. DENEGRI S, GIOVANNINI M, SACCONE A. Constitutional properties of the La-Cu-Mg system at 400 °C [J]. J Alloy Compd, 2007, 427(1/2): 134–141.

    Article  Google Scholar 

  9. HOHENBERG P, KOHN W. Inhomogeneous Electron Gas* [J]. Physical Review B, 1964, 136(3): B864.

    Article  MathSciNet  Google Scholar 

  10. KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758.

    Article  Google Scholar 

  11. WANG C, KLEIN B, KRAKAUER H. Theory of magnetic and structural ordering in iron [J]. Physical review letters, 1985, 54(16): 1852–1855.

    Article  Google Scholar 

  12. BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953.

    Article  Google Scholar 

  13. MONKHORST H J, PACK J D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192.

    Article  MathSciNet  Google Scholar 

  14. ZUBOV V, TRETIAKOV N, TEIXEIRA R J, SANCHEZ O J. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a van der Waals crystal-fullerene C60 [J]. Physics Letters A, 1994, 194(3): 223–227.

    Google Scholar 

  15. GERCEK H. Poisson’s ratio values for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 1–13.

    Article  Google Scholar 

  16. LIU Y, LIU L, WANG S, YE H. First-principles study of shear deformation in TiAl and Ti3Al [J]. Intermetallics, 2007, 15(3): 428–435.

    Article  Google Scholar 

  17. MATTESINI M, AHUJI R, JOHANSSON B. Cubic Hf3N4 and Zr3N4: A class of hard materials [J]. Physical Review B, 2003, 68(18): 184108.

    Article  Google Scholar 

  18. OUYANG Y F, TAO X M, FENG Y P, DU Y, ZHONG X P. First-principles calculations of elastic constants of DO3-Mg3 RE (RE= Sc, Y, La, Ce, Lu) [J]. Physica Scripta, 2008, 78: 065601.

    Article  Google Scholar 

  19. HUANG Z W, ZHAO Y H, HOU H, ZHAO Y H, NIU X F, HAN P D. Structural, thermodynamics and elastic properties of Mg17Al12, Al2Y and Al4Ba phases by first-principles calculations [J]. Journal of Central South University, 2012, 19(6): 1427–1481.

    Article  Google Scholar 

  20. PETTIFOR D. Theoretical predictions of structure and related properties of intermetallics [J]. Materials science and technology, 1992, 8(4): 345–349.

    Article  Google Scholar 

  21. ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909–917.

    Article  Google Scholar 

  22. ZHANG R, SHENG S, VEPREK S. First principles studies of ideal strength and bonding nature of AlN polymorphs in comparison to TiN [J]. Appl Phys Lett, 2007, 91(3): 031906–031906-3.

    Article  Google Scholar 

  23. LIAO T, WANG J, ZHOU Y. Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations [J]. Physical Review B, 2006, 73(21): 214109.

    Article  Google Scholar 

  24. LIU Y, HU W C, LI D, ZENG X Q, XU C S, YANG X J. First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure [J]. Intermetallics, 2012, 31: 257–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-yu Tang  (唐壁玉).

Additional information

Foundation item: Project(51071053) supported by the National Natural Science Foundation of China; Project(X071117) supported by the Scientific Research Foundation of Guangxi University, China; Project(KF0803) supported by the Open Project of Key Laboratory of Materials Design and Preparation Technology of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Mh., Pan, Rk., Li, Pb. et al. First-principles study on mechanical properties of LaMg3 and LaCuMg2 . J. Cent. South Univ. 21, 2136–2142 (2014). https://doi.org/10.1007/s11771-014-2163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2163-5

Key words

Navigation