Skip to main content

Advertisement

Log in

Size Effect in Ultrafine Ti-Fe-(Sn) Lamellar Composites during Micro- and Nanoindentation

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The indentation size effect (ISE) has been investigated in a series of (Ti0.705Fe0.295)100-xSnx (0 ≤ x ≤ 4) ultrafine eutectic composites (UECs) by both the micro- and nanoindentation and has been correlated for a wide range of depth between 300 nm and 10 µm. The lamellar composites are comprised of ultrafine FeTi and β-Ti lamellae phases with lamellae thickness between 0.32 and 0.81 μm. The contribution of the individual lamellae phases and the prior deformation on the ISE have been investigated to study the evolution of geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs). X-ray diffraction, transmission electron microscopic studies, and the model calculations have revealed that a significant portion of the lamellae interface in the as-solidified composites aid in the development of high GND density ≈ 1015/m2 and exhibit hardness ≈ 16 GPa, which further enhanced up to ≈ 1016/m2 and ≈ 22 GPa upon severe forging. A model has been established to correlate the micro- and nanoindentation hardness by considering the size effect and the microstructure length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Atkinson, Further Analysis of the Size Effect in Indentation Hardness Tests of Some Metals, J. Mater. Res., 1995, 10, p 2908–2915.

    Article  CAS  Google Scholar 

  2. M.R. Begley and J.W. Hutchinson, The Mechanics of Size-Dependent Indentation, J. Mech. Phys. Solids, 1998, 46, p 2049–2068.

    Article  CAS  Google Scholar 

  3. A. Gunti and J. Das, Size Effect and Anisotropy in Cold Rolled Zr-Base Bulk Metallic Glasses during Nanoindentation, J. Non-Cryst. Solids, 2022, 593, p 121767.

    Article  CAS  Google Scholar 

  4. Q. Ma and D.R. Clarke, Size Dependent Hardness in Silver Single Crystals, J. Mater. Res., 1995, 10, p 853–863.

    Article  CAS  Google Scholar 

  5. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, Determination of Indenter Tip Geometry and Indentation Contact Area for Depth Sensing Indentation Experiments, J. Mater. Res., 1998, 13, p 1300–1306.

    Article  CAS  Google Scholar 

  6. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46, p 411–425.

    Article  CAS  Google Scholar 

  7. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman, Microindentation on W and Mo Oriented Single Crystals: An ASTM Study, Acta Metall. Mater., 1993, 41, p 2855–2865.

    Article  CAS  Google Scholar 

  8. J.G. Swadener, E.P. George, and G.M. Pharr, The Correlation of the Indentation Size Effect Measured with Indenters of Various Shapes, J. Mech. Phys. Solids, 2002, 50, p 681–694.

    Article  Google Scholar 

  9. Y.Y. Lim and M.M. Chaudhri, The Effect of the Indenter Load on the Nanohardness of Ductile Metals: An Experimental Study on Polycrystalline Work-Hardened and Annealed Oxygen Free Copper, Philos. Mag. A, 1999, 79, p 2979–3000.

    Article  CAS  Google Scholar 

  10. K. Durst, B. Backes, and M. Goeken, Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone, Scr. Mater., 2005, 52, p 1093–1097.

    Article  CAS  Google Scholar 

  11. G. Feng and W.D. Nix, Indentation Size Effect in MgO, Scr. Mater., 2004, 51, p 599–603.

    Article  CAS  Google Scholar 

  12. Y. Liu and A.H.W. Ngan, Depth Dependence of Hardness in Copper Single Crystals Measured by Nanoindentation, Scr. Mater., 2002, 44, p 237–241.

    Article  Google Scholar 

  13. A.A. Elmustafa and D.S. Stone, Nanoindentation and the Indentation Size Effect: Kinetics of Deformation and Strain Gradient Plasticity, J. Mech. Phys. solids, 2003, 51, p 357–381.

    Article  CAS  Google Scholar 

  14. J.G. Swadener, A. Misra, R.G. Hoagland, and M. Nastasi, A Mechanistic Description of Combined Hardening and Size Effects, Scr. Mater., 2002, 47, p 343–348.

    Article  CAS  Google Scholar 

  15. J.Y. Kim, B.W. Lee, D.T. Read, and D. Kwon, Influence of Tip Bluntness on the Size-Dependent Nanoindentation Hardness, Scr. Mater., 2005, 52, p 353–358.

    Article  CAS  Google Scholar 

  16. S. Qu, T. Siegmund, Y. Huang, P.D. Wu, F. Zhang, and K.C. Hwang, A study of Particle Size Effect and Interface Fracture in Aluminum Alloy Composite via an Extended Conventional Theory of Mechanism-Based Strain-Gradient Plasticity, Compos. Sci. Technol., 2005, 65, p 1244–1253.

    Article  CAS  Google Scholar 

  17. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, and G. Feng, A Model Size Effect in Nano-indentation, J. Mech. Phys. Solids, 2006, 54, p 1668–1686.

    Article  Google Scholar 

  18. A.A. Elmustafa, A.A. Ananda, and W.M. Elmahboub, Dislocation Mechanics Simulations of the Bilinear Behavior in Micro- and Nanoindentation, J. Mater. Res., 2004, 19, p 768–779.

    Article  CAS  Google Scholar 

  19. X. Qiu, Y. Huang, W.D. Nix, K.C. Hwang, and H. Gao, Effect of Intrinsic Lattice Resistance in Strain Gradient Plasticity, Acta Mater., 2001, 49, p 3949–3958.

    Article  CAS  Google Scholar 

  20. G.M. Pharr, J. Strader, and W.C. Oliver, Critical Issues in Making Small-Depth Mechanical Property Measurements by Nanoindentation with Continuous Stiffness Measurement, J. Mater. Res., 2009, 24, p 653–666.

    Article  CAS  Google Scholar 

  21. K. Durst, O. Franke, A. Böhner, and M. Göken, Indentation Size Effect in Ni-Fe Solid-Solutions, Acta Mater., 2007, 55, p 6825–6833.

    Article  CAS  Google Scholar 

  22. K.S. Kumar, S.H. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774.

    Article  CAS  Google Scholar 

  23. E. Ma, Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys, JOM, 2006, 58, p 49–53.

    Article  CAS  Google Scholar 

  24. J.M. Park, D.H. Kim, K.B. Kim, and W.T. Kim, Deformation-Induced Rotational Eutectic Colonies Containing Length-Scale Heterogeneity in an Ultrafine Eutectic Fe83Ti7Zr6B4 Alloy, Appl. Phys. Lett., 2007, 91, 131907.

    Article  Google Scholar 

  25. J. Das, K.B. Kim, F. Baier, and W. Loser, High Strength Ti-Base Ultrafine Eutectic with Enhanced Ductility, Appl. Phys. Lett., 2005, 87, 161907.

    Article  Google Scholar 

  26. K.B. Kim, J. Das, F. Baier, and J. Eckert, Propagation of Shear Bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 Nanostructure-Dendrite Composite during Deformation, Appl. Phys. Lett., 2005, 86, p 171909.

    Article  Google Scholar 

  27. J. Das, K.B. Kim, W. Loser, and J. Eckert, Formation of Ductile Ultrafine Eutectic Structure in Ti-Fe-(Sn) Alloy, Mater. Sci. Eng. A, 2008, 449–451, p 737–740.

    Google Scholar 

  28. D.V. Louzguine, H. Kato, and A. Inoue, High Strength and Ductile Ti-Fe Composite, J. Alloys Compd., 2004, 384, p L1–L3.

    Article  CAS  Google Scholar 

  29. S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.M. Kim, J.M. Park, and K.B. Kim, Micro-to-Nano-Scale Deformation Mechanism of a Bimodal Ultrafine Eutectic Composite, Sci. Rep., 2014, 4, p 06500.

    Article  CAS  Google Scholar 

  30. J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim, and D.H. Kim, Nanostructure-Dendrite Composites in the Fe-Zr Binary Alloy System Exhibiting High Strength and Plasticity, Scr. Mater., 2007, 57, p 1153–1156.

    Article  CAS  Google Scholar 

  31. T. Maity and J. Das, High Strength Ni-Zr-(Al) Nanoeutectic Composites with Large Plasticity, Intermetallics, 2015, 63, p 51–58.

    Article  CAS  Google Scholar 

  32. J.M. Park, K.B. Kim, W.T. Kim, M.H. Lee, J. Eckert, and D.H. Kim, High Strength Ultrafine Eutectic Fe-Nb-Al Composites with Enhanced Plasticity, Intermetallics, 2008, 16, p 642–650.

    Article  CAS  Google Scholar 

  33. C.H. Lee, S.H. Hong, J.T. Kim, H.J. Park, G.A. Song, J.M. Park, J.Y. Suh, Y. Seo, M. Qian, and K.B. Kim, Chemical Heterogeneity-Induced Plasticity in Ti-Fe-Bi Ultrafine Eutectic Alloys, Mater. Des., 2014, 60, p 363–367.

    Article  Google Scholar 

  34. G.A. Song, W. Lee, N.S. Lee, K.B. Kim, J.M. Park, D.H. Kim, J. Lee, and J.S. Park, Microstructure Evolution and Mechanical Properties of Mg-Cu-Zn Ultrafine Eutectic Composites, J. Mater. Res., 2009, 24, p 2892–2898.

    Article  CAS  Google Scholar 

  35. T. Maity and J. Das, Microstructure and Size Effect in Ultrafine (Ti0.705Fe0.295)100-xSnx (0 ≤ x ≤ 4 at.%) Composites, J. Alloys Compd., 2014, 585, p 54–62.

    Article  CAS  Google Scholar 

  36. T. Maity and J. Das, Origin of Plasticity in Ultrafine Lamellar Ti-Fe-(Sn) Composites, AIP Adv., 2012, 2, p 032175.

    Article  Google Scholar 

  37. T. Maity, B. Roy, and J. Das, Mechanism of Lamellae Deformation and Phase Rearrangement in Ultrafine β-Ti/FeTi Eutectic Composites, Acta Mater., 2015, 97, p 170–179.

    Article  CAS  Google Scholar 

  38. T. Maity, K.G. Prashanth, Ö. Balcı, J.T. Kim, T. Schöberl, Z. Wang, and J. Eckert, Influence of Severe Straining and Strain Rate on the Evolution of Dislocation Structures during Micro/Nanoindentation in High Entropy Lamellar Eutectics, Int. J. Plast., 2018, 109, p 121–136.

    Article  CAS  Google Scholar 

  39. T. Maity, K.G. Prashanth, Ö. Balçi, Z. Wang, Y.D. Jia, and J. Eckert, Plastic Deformation Mechanisms in Severely Strained Eutectic High Entropy Composites Explained via Strain Rate Sensitivity and Activation Volume, Compos. B Eng., 2018, 150, p 7–13.

    Article  CAS  Google Scholar 

  40. A. Gunti and J. Das, Effect of Testing Conditions on the Nanomechanical Behaviour of Surface and Inner Core of as-cast Zr-Base Bulk Metallic Glassy Plates, Mater. Sci. Eng. A, 2022, 845, p 143206.

    Article  CAS  Google Scholar 

  41. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583.

    Article  CAS  Google Scholar 

  42. G.H. Xiao, N.R. Tao, and K. Lu, Effects of Strain, Strain-Rate and Temperature on Deformation Twinning in a Cu-Zn Alloy, Scr. Mater., 2008, 59, p 975–978.

    Article  CAS  Google Scholar 

  43. S.M. Allen, Foil Thickness Measurements from Convergent-Beam Diffraction Pattern, Philos. Mag. A, 1981, 43, p 325–335.

    Article  CAS  Google Scholar 

  44. D. Chicot, Hardness Length-Scale Factor to Model Nano- and Micro-Indentation Size Effects, Mater. Sci. Eng. A, 2009, 499, p 454–461.

    Article  Google Scholar 

  45. G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. Eng. A, 1998, 253, p 151–159.

    Article  Google Scholar 

  46. K. Durst, B. Backes, O. Franke, and M. Goeken, Indentation Size Effect in Materials: Modeling Strength from Pop-in to Macroscopic Hardness Using Geometrically Necessary Dislocation, Acta Mater., 2006, 54, p 2547–2555.

    Article  CAS  Google Scholar 

  47. D. Kuhlmann-Wilsdorf and N. Hansen, Geometrically Necessary, Incidental and Subgrain Boundaries, Scr. Metall. Mater., 1991, 25, p 1557–1562.

    Article  CAS  Google Scholar 

  48. N. Hansen, X. Huang, and D.A. Hughes, Microstructural Evolution and Hardening Parameters, Mater. Sci. Eng. A, 2001, 317, p 3–11.

    Article  Google Scholar 

  49. L.S. Toth, C.F. Gu, B. Beausir, J.J. Fundenberger, and M. Hoffman, Geometrically Necessary Dislocations Favor the Taylor Uniform Deformation Mode in Ultra-Fine-Grained Polycrystals, Acta Mater., 2016, 117, p 35–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Maity and P. Das for their technical assistance. Financial support through SRIC IIT Kharagpur through the SGIRG project “Studies on the deformation mechanism and evolution of plasticity in nano-/ultrafine lamellar composites” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunti, A., Maity, T. & Das, J. Size Effect in Ultrafine Ti-Fe-(Sn) Lamellar Composites during Micro- and Nanoindentation. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09364-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09364-z

Keywords

Navigation