Skip to main content
Log in

Improvement of prediction model for work roll thermal contour in hot strip mill

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

Though high accuracy of the thermal contour was obtained while adopting finite element method, it could not meet the real-time requirement. One-dimensional finite difference method could realize real-time control in the case of neglecting both the circumferential and radical heat exchange, but the over-simplified modes resulted in poor accuracy. And two-dimensional full explicit difference was also limited in practical application since its time step was restricted to keep the model stable. Consequently, a new method of alternating direction finite difference was introduced and discussed in the model’s stability, calculating speed and precision. Specific work roll after one real rolling unit was researched, The result shows that error of temperature on work roll surface between measured and calculated values is within 5 °C. The influence of rolling rhythm and strip width on thermal crown was also studied. The conclusion is verified theoretically and practically that it can maintain absolutely stable and meet the online requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GINZBURG V B. Application of coolflex model for analysis of work roll thermal conditions in hot strip mills [J]. Iron and Steel Engineer, 1997, 11: 42.

    Google Scholar 

  2. GINZBURG V B, GIUSTO D. Roll thermal crown (RTC) control system [J]. MPT Metallurgical Plant and Technology International, 1994, 17(4): 80–81.

    Google Scholar 

  3. ZHANG Xun-li, ZHANG Jie, WEI Gang-cheng, MA Shao-hua. Study on work roll temperature field and thermal profile in hot strip mills [J]. Metallurgical Equipment, 2002, 6(1): 133–136. (in Chinese)

    Google Scholar 

  4. WANG Ren-zhong, HE An-rui, YANG Quan. Thermal contour model of work rolls in hot wide strip mills [J]. Journal of University of Science and Technology Beijing, 2004, 26(6): 654–657. (in Chinese)

    Google Scholar 

  5. WANG Xiao-dong, YANG Quan, HE An-rui, WANG Ren-zhong. Comprehensive contour prediction model of work roll used in online strip shape control model during hot rolling [J]. Ironmaking and steelmaking, 2007, 34(4): 303–311.

    Article  Google Scholar 

  6. PANJKOVIC V, FRASER G, YUEN D. Applications of the crown and shape model in blue scope steel’s western por hot strip mill [J]. Iron and Steel Technology, 2004, 1(10): 98–107.

    Google Scholar 

  7. CAMPOS A M, GARCI D F, ABAJO N. Real-time rule based control of the thermal crown of work rolls installed in hot strip mills [J]. IEEE Transactions on Industry Applications, 2004, 40(2): 642–649.

    Article  Google Scholar 

  8. GUO Zhong-feng, LI Chang-sheng, XU Jian-zhong, LIU Xiang-hua. Analysis of temperature field and thermal crown of roll during hot rolling by simplified FEM [J]. Journal of Iron and Steel Research International, 2006, 13(6): 27–30.

    Article  Google Scholar 

  9. STEVENS P G. Increasing work-roll life by improved rolling practice [J]. J Iron and Steel Inst, 1971(1): 1–6.

  10. TSENG A A, TONG S X, CHEN T C. Thermal expansion and crown evaluations in rolling processes [J]. Material and Design, 1996, 1(4): 193–204.

    Article  Google Scholar 

  11. TOPNO R, PRAKASH K, JHA S K. Different colling of hot rolled angles to reduce thermal camber [J]. Steel Times International, 2003, 27(4): 18–20.

    Google Scholar 

  12. COLAS R. Modeling heat transfer during hot rolling of steel strip model [J]. Simul Mater Sci Eng, 1995, 3(4): 437–453.

    Article  Google Scholar 

  13. PLLONE G T. Transient temperature distribution in work rolls during hot rolling of sheet strip [J]. Iron Steel Eng, 1983, 5(12): 21–24.

    Google Scholar 

  14. YUEN W Y D. Research on the steady-state temperature distribution in a rotating cylinder subject to heating and cooling over its surface [J]. Trans ASME, 1984, 106(8): 578–583.

    Article  Google Scholar 

  15. SUMI H. A numerical model and control of plate crown in the hot strip or plate rolling [J]. Advanced Technology of Plasticity, 1984, 1(2): 1360–1365.

    Google Scholar 

  16. HOGSHEAD T H. Temperature distributions in the rolling of metal strip [D]. Pennsylvania: Camegie Mellon University, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-sheng Wang  (王连生).

Additional information

Foundation item: Project(2006BAE03A13) supported by the National Science and Technology Support Program during the 11th Five-Year Plan Period

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Ls., Yang, Q., He, Ar. et al. Improvement of prediction model for work roll thermal contour in hot strip mill. J. Cent. South Univ. Technol. 17, 1251–1257 (2010). https://doi.org/10.1007/s11771-010-0628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-010-0628-8

Key words

Navigation