Skip to main content
Log in

Advancements in accuracy decline mechanisms and accuracy retention approaches of CNC machine tools: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Computer numerical control (CNC) machine tools, as advanced manufacturing equipment, have been widely used in modern manufacturing. The machining accuracy acting as a main index of performance has long been more concerned by the engineering and academic community. However, in practice, it is more important that the CNC machine tools should have the ability to maintain their original accuracy or keep the accuracy within an acceptable range under complex working conditions after long-term service. This paper presents an overview of the research progress on the accuracy decline mechanism and the accuracy retention approaches of the CNC machine tools. First, the leading theory of accuracy decline and the mechanism of accuracy decline, such as moving components, residual stress and deformation, bolt creep and looseness, interface morphology, and ambient temperature, are described in detail. The accuracy decline is evaluated well. Then, various retention accuracy approaches are comprehensively reviewed, and the evaluation of accuracy retention is introduced. Finally, the challenges and opportunities for industry and academia are discussed, and several principle conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Data availability

The authors declare that the data and material used or analyzed in the present study can be obtained from the corresponding author at reasonable request.

References

  1. Zhang S, To S, Zhang G, Zhu Z (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining. Int J Mach Tools Manuf 91:34–42. https://doi.org/10.1016/j.ijmachtools.2015.01.005

    Article  Google Scholar 

  2. Sartori S, Zhang G (1995) Geometric error measurement and compensation of machines. CIRP Ann 44(2):599–609. https://doi.org/10.1016/s0007-8506(07)60507-1

    Article  Google Scholar 

  3. Fan K, Chen H, Kuo T (2012) Prediction of machining accuracy degradation of machine tools. Precis Eng 36(2):288–298. https://doi.org/10.1016/j.precisioneng.2011.11.002

    Article  Google Scholar 

  4. Fu G, Fu J, Xu Y, Chen Z, Lai J (2014) Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. Int J Mach Tools Manuf 89:170–181. https://doi.org/10.1016/j.ijmachtools.2014.11.005

    Article  Google Scholar 

  5. Liu Y, Guo L, Gao H, You Z, Ye Y, Zhang B (2022) Machine vision based condition monitoring and fault diagnosis of machine tools using information from machined surface texture: a review. Mech Syst Signal Process 164:108068. https://doi.org/10.1016/j.ymssp.2021.108068

    Article  Google Scholar 

  6. Roylance B (2003) Machine failure and its avoidance—what is tribology’s contribution to effective maintenance of critical machinery? P I Mech Eng J-J Eng 217:349–364. https://doi.org/10.1243/135065003322445278

    Article  Google Scholar 

  7. Ding W, Huang X, Zhu S, Wang M (2012) Research progress on accuracy failure of CNC machine tools (Chinese). Machine tool & hydraulics 15:150–153. https://doi.org/10.3969/j.issn.1001-3881.2012.15.039

    Article  Google Scholar 

  8. Gorjian N, Ma L, Mittinty M, Yarlagadda P, Sun Y (2009) A review on degradation models in reliability analysis. Proceedings of the 4th World Congress on Engineering Asset Management 42:369–384. https://doi.org/10.1007/978-0-85729-320-6_42

  9. Liu S, Zhang X (2014) Latest development of accuracy recession of numerically-controlled machine tools. Adv Mat Res 971–973:565–568. https://doi.org/10.4028/www.scientific.net/AMR.971-973.565

    Article  Google Scholar 

  10. Zhao B, Yang P, Chen K, Gao J (2011) Research on life of machine accuracy and precision reliability assessment concerning about a turn-milling combined machine tool. 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering 2011:168–173. https://doi.org/10.1109/ICQR2MSE.2011.5976589

  11. Zhang G, Huang Y, Shi W, Fu W (2003) Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int J Mach Tools Manuf 43:699–706. https://doi.org/10.1016/s0890-6955(03)00026-9

    Article  Google Scholar 

  12. Chlebus E, Dybala B (1999) Modelling and calculation of properties of sliding guideways. Int J Mach Tools Manuf 39:1823–1839. https://doi.org/10.1016/S0890-6955(99)00041-3

    Article  Google Scholar 

  13. Ma J, Zhao W, Zhang G (2015) Research status and analyses on accuracy retentivity of domestic CNC machine tools (Chinese). China mechanical engineering 26(022):3108–3115. https://doi.org/10.3969/j.issn.1004-132X.2015.22.020

    Article  Google Scholar 

  14. Meng H, Ludema K (1995) Wear models and predictive equations: their form and content. Wear 181–183:443–457. https://doi.org/10.1016/0043-1648(95)90158-2

    Article  Google Scholar 

  15. Ludema K (1996) Mechanism-based modeling of friction and wear. Wear 200:1–7. https://doi.org/10.1016/S0043-1648(96)07312-7

    Article  Google Scholar 

  16. Jones A (1960) A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. J Basic Eng 82(2):309. https://doi.org/10.1115/1.3662587

    Article  Google Scholar 

  17. Hertz H (1882) On the contact of rigid elastic solids and on hardness. In: Hertz H (ed) Reprinted from Assorted papers, Chap 6, MacMillan, pp 163–183

  18. Harris T, Mindel M (1973) Rolling element bearing dynamics. Wear 23(3):311–337. https://doi.org/10.1016/0043-1648(73)90020-3

    Article  Google Scholar 

  19. Lin M (1989) Design and mechanics of the ball screw mechanism. Dissertation, University of Wisconsin Madison

  20. Cao H, Niu L, Xi S, Chen X (2018) Mechanical model development of rolling bearing-rotor systems: a review. Mech Syst Signal Process 102:37–58. https://doi.org/10.1016/j.ymssp.2017.09.023

    Article  Google Scholar 

  21. Sahin Y (2005) The prediction of wear resistance model for the metal matrix composites. Wear 258(11–12):1717–1722. https://doi.org/10.1016/j.wear.2004.11.024

    Article  Google Scholar 

  22. Tan Y, Zhang L, Hu Y (2014) A wear model of plane sliding pairs based on fatigue contact analysis of asperities. Tribol T 58(1):148–157. https://doi.org/10.1080/10402004.2014.956907

    Article  Google Scholar 

  23. Lim S (1998) Recent developments in wear-mechanism maps. Tribol Int 31(1–3):87–97. https://doi.org/10.1016/S0301-679X(98)00011-5

    Article  Google Scholar 

  24. Burwell J, Strang C (1952) On the empirical law of adhesive wear. J Appl Phys 23(1):18–28. https://doi.org/10.1063/1.1701970

    Article  Google Scholar 

  25. Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  26. Archard J, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc Lond A 236(1206):397–410. https://doi.org/10.1098/rspa.1956.0144

    Article  Google Scholar 

  27. Hu Y, Wang C, Yang R, Tang Y (2014) The attenuation model of sliding guides wear theory based on Archard wear model. IEEE Int Conf Mechatron Autom 2014:1570–1574. https://doi.org/10.1109/ICMA.2014.6885934

    Article  Google Scholar 

  28. Zhao B, Zhang S, Li J, Wang P (2016) Friction characteristics of sliding guideway material considering original surface functional parameters under hydrodynamic lubrication. P I Mech Eng J-J Eng 231(7):813–825. https://doi.org/10.1177/1350650116681941

    Article  Google Scholar 

  29. Ekinci T, Mayer J (2007) Relationships between straightness and angular kinematic errors in machines. Int J Mach Tools Manuf 47:1997–2004. https://doi.org/10.1016/j.ijmachtools.2007.02.002

    Article  Google Scholar 

  30. Fan J, Wang X, Li Y (2012) Research on analytical method of CNC machine tools precision recession. Appl Mech Mater 159:213–217. https://doi.org/10.4028/www.scientific.net/AMM.159.213

    Article  Google Scholar 

  31. Tan Y, Zhang L, Wang K, Hu Y (2015) Modeling of precision retaining ability for slide guide of machine tool based on wear analysis (Chinese). T Chin Soc Agric Mach 46(2):351–356. https://doi.org/10.6041/j.issn.1000-1298.2015.02.052

  32. Zhou S, Sun B (2017) Parameter identification and optimization of slide guide joint of CNC machine tools. IOP Conference Series: Mater Sci Eng 265:012025. https://doi.org/10.1088/1757-899x/265/1/012025

    Article  Google Scholar 

  33. Xu H, He T, Zhong N, Zhao B, Liu Z (2022) Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy. Tribol Int 167:107362. https://doi.org/10.1016/j.triboint.2021.107362

    Article  Google Scholar 

  34. Bilkay O, Anlagan O (2004) Computer simulation of stick-slip motion in machine tool slideways. Tribol Int 37:347–351. https://doi.org/10.1016/j.triboint.2003.11.006

    Article  Google Scholar 

  35. Kim G, Han J, Lee S (2014) Motion error estimation of slide table on the consideration of guide parallelism and pad deflection. Int J Precis Eng Manuf 15(9):1935–1946. https://doi.org/10.1007/s12541-014-0548-x

    Article  Google Scholar 

  36. Ma Y, Ye Z, Sun S (2013) Shen H (2013) Research on slideways characteristics based on machine tool stiffness (Chinese). Modular Machine Tool & Automatic Manufacturing Technique 11:1–4. https://doi.org/10.3969/j.issn.1001-2265.2013.11.001

    Article  Google Scholar 

  37. Zhu L, Li L, Liu J, Zhang Z (2009) A method for measuring the guideway straightness error based on polarized interference principle. Int J Mach Tools Manuf 49:285–290. https://doi.org/10.1016/j.ijmachtools.2008.10.009

    Article  Google Scholar 

  38. Tang H, Duan J, Zhao Q (2017) A systematic approach on analyzing the relationship between straightness & angular errors and guideway surface in precise linear stage. IntJ Mach Tools Manuf 120:12–19. https://doi.org/10.1016/j.ijmachtools.2017.04.010

    Article  Google Scholar 

  39. Mahdi R, Stephan K, Friedrich B (2015) Experimental investigations on stick-slip phenomenon and friction characteristics of linear guides. Precis Eng 100:1023–1031. https://doi.org/10.1016/j.proeng.2015.01.462

    Article  Google Scholar 

  40. Chang J, Wu J, Hung J (2007) Characterization of the dynamic behavior of a linear guideway mechanism. Struct Eng Mech 25(1):1–20. https://doi.org/10.12989/sem.2007.25.1.001

  41. Huang B, Gao H, Xu M, Wu X, Zhao M (2010) Guo L (2010) Life prediction of CNC linear rolling guide based on DFNN performance degradation model. Seventh International Conference on Fuzzy Systems and Knowledge Discovery FSKD 3:1310–1314. https://doi.org/10.1109/FSKD.2010.5569106

    Article  Google Scholar 

  42. Vogl G, Jameson N, Archenti A, Szipka K, Donmez M (2019) Root-cause analysis of wear-induced error motion changes of machine tool linear axes. Int J Mach Tools Manuf 143:38–48. https://doi.org/10.1016/j.ijmachtools.2019.05.004

    Article  Google Scholar 

  43. Lin C, Hung J, Lo T (2010) Effect of preload of linear guides on dynamic characteristics of a vertical column–spindle system. Int J Mach Tools Manuf 50:741–746. https://doi.org/10.1016/j.ijmachtools.2010.04.002

    Article  Google Scholar 

  44. Hung J, Lai Y, Lin C, Lo T (2011) Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide. Int J Mach Tools Manuf 51:731–739. https://doi.org/10.1016/j.ijmachtools.2011.05.002

    Article  Google Scholar 

  45. Sun W, Kong X, Wang B, Li X (2014) Statics modeling and analysis of linear rolling guideway considering rolling balls contact. P I Mech Eng C-J Mec 229(1):168–179. https://doi.org/10.1177/0954406214531943

    Article  Google Scholar 

  46. Ni Y, Zhou H, Shao C, Li J (2019) Research on the error averaging effect in a rolling guide pair. Chin J Mech Eng 32(1):1–12. https://doi.org/10.1186/s10033-019-0386-y

    Article  Google Scholar 

  47. He G, Shi P, Guo L, Ding B (2020) A linear model for the machine tool assembly error prediction considering roller guide error and gravity-induced deformation. P I Mech Eng C-J Mec 234(15):2939–2950. https://doi.org/10.1177/0954406220911401

    Article  Google Scholar 

  48. Rahmani M, Bleicher F (2016) Experimental and numerical studies of the influence of geometric deviations in the performance of machine tools linear guides. Procedia CIRP 41:818–823. https://doi.org/10.1016/j.procir.2015.08.089

    Article  Google Scholar 

  49. Zhang L, Gao H, Dong D, Fu G, Liu Q (2018) Wear calculation-based degradation analysis and modeling for remaining useful life prediction of ball screw. Math Probl Eng 2018:1–18. https://doi.org/10.1155/2018/2969854

    Article  Google Scholar 

  50. Wang Y, Guo Z, Liu B, Zhu Y, Luo H (2017) Investigation of ball screw’s alignment error based on dynamic modeling and magnitude analysis of worktable sensed vibration signals. Assem Autom 37(4):483–489. https://doi.org/10.1108/aa-08-2016-088

    Article  Google Scholar 

  51. Cheng Q, Qi B, Liu Z, Zhang C, Xue D (2019) An accuracy degradation analysis of ball screw mechanism considering time-varying motion and loading working conditions. Mech Mach Theory 134:1–23. https://doi.org/10.1016/j.mechmachtheory.2018.12.024

    Article  Google Scholar 

  52. Wen J, Gao H (2018) Degradation assessment for the ball screw with variational autoencoder and kernel density estimation. Adv Mech Eng 10(9):168781401879726. https://doi.org/10.1177/1687814018797261

    Article  Google Scholar 

  53. Wen J, Gao H (2018) Remaining useful life prediction of the ball screw system based on weighted Mahalanobis distance and an exponential model. J Vibroeng 20(4):1691–1707. https://doi.org/10.21595/jve.2018.1909

  54. Wei C, Liou W, Lai R (2012) Wear analysis of the offset type preloaded ball–screw operating at high speed. Wear 292–293:111–123. https://doi.org/10.1016/j.wear.2012.05.024

    Article  Google Scholar 

  55. Wei C, Lin J (2003) Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations. J Mech Design 125(4):717–733. https://doi.org/10.1115/1.1623761

    Article  Google Scholar 

  56. Wei C, Lin J, Horng J (2009) Analysis of a ball screw with a preload and lubrication. Tribol Int 42(11):1816–1831. https://doi.org/10.1016/j.triboint.2008.12.013

    Article  Google Scholar 

  57. Li T, Yuan J, Zhang Y, Zhao C (2020) Time-varying reliability prediction modeling of positioning accuracy influenced by frictional heat of ball-screw systems for CNC machine tools. Precis Eng 64:147–156. https://doi.org/10.1016/j.precisioneng.2020.04.002

    Article  Google Scholar 

  58. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann 59(2):781–802. https://doi.org/10.1016/j.cirp.2010.05.002

    Article  Google Scholar 

  59. Lin C, Lin Y, Chu C (2013) Dynamic models and design of spindle-bearing systems of machine tools: a review. Int J Precis Eng Manuf 14(3):513–521. https://doi.org/10.1007/s12541-013-0070-6

    Article  Google Scholar 

  60. Xi S, Cao H, Chen X, Niu L (2018) Dynamic modeling of machine tool spindle bearing system and model based diagnosis of bearing fault caused by collision. Procedia CIRP 77:614–617. https://doi.org/10.1016/j.procir.2018.08.197

    Article  Google Scholar 

  61. Tu J, Katter J (1996) Bearing force monitoring in a three-shift production environment. Tribol T 39(1):201–207. https://doi.org/10.1080/10402009608983521

    Article  Google Scholar 

  62. Sabirov F, Gilovoj L, Bogan A, Yakhutlov M, Nartyzhev R (2018) Application of CAE for modeling the parametric failure of the spindle due to rigidity by bearing wear. IEEE International Conference 2018:471–473. https://doi.org/10.1109/ITMQIS.2018.8524941

    Article  Google Scholar 

  63. Zhang T, Chen X, Gu J, Wang Z (2018) Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings. Chinese J Aeronaut 31(3):597–607. https://doi.org/10.1016/j.cja.2017.07.006

    Article  Google Scholar 

  64. Ngo T, Than V, Wang C, Huang J (2017) Analyzing characteristics of high-speed spindle bearing under constant preload. P I Mech Eng J-J Eng 232(5):568–581. https://doi.org/10.1177/1350650117723484

    Article  Google Scholar 

  65. Zhang L, Xuan J (2020) Qualitative research on the relationship between spindle vibration characteristics and bearing thermal load. J Phys: Int Conf Phys Mech Mathematic Sci 1707(1):012014. https://doi.org/10.1088/1742-6596/1707/1/012014

    Article  MathSciNet  Google Scholar 

  66. Spiewak S, Nickel T (2001) Vibration based preload estimation in machine tool spindles. Int J Mach Tools Manuf 41(4):567–588. https://doi.org/10.1016/S0890-6955(00)00081-X

    Article  Google Scholar 

  67. Raja V, Thyla P, Radhakrishnan P (2006) A strategy of investigation on the thermal behaviour of motorised spindles under high-speed machining. Int J Comput Appl Technol 27(1):1–11. https://doi.org/10.1504/IJCAT.2006.010984

    Article  Google Scholar 

  68. Zivkovic A, Knezev M, Zeljkovic M, Navalusic S, Beju L (2019) A study of thermo-elastic characteristics of the machine tool spindle. MATEC Web of Conferences 290:1009. https://doi.org/10.1051/matecconf/201929001009

    Article  Google Scholar 

  69. Ma W, Mi J, Yang Q (2016) Research on positioning accuracy retentivity of machining center based on residual stress (Chinese). China mechanical engineering 27(017):2293–2297. https://doi.org/10.3969/j.issn.1004-132X.2016.17.004

    Article  Google Scholar 

  70. Hu M, Yu C, Zhao W, Cun H, Yuan S, Zhang W (2014) Optimization method of VSR process parameters for large machine tool body (Chinese). China Mechanic Eng 25(23):3137–3142. https://doi.org/10.3969/j.issn.1004-132X.2014.23.003

    Article  Google Scholar 

  71. Palumbo G, Piccininni A, Piglionico V, Guglielmi P, Sorgente D, Tricarico L (2015) Modelling residual stresses in sand-cast superduplex stainless steel. J Mater Process Tech 217:253–261. https://doi.org/10.1016/j.jmatprotec.2014.11.006

    Article  Google Scholar 

  72. Capello E, Davoli P, Bassanini G, Bisi A (1999) Residual stresses and surface roughness in turning. J Eng Mater Technol 21(3):346–351. https://doi.org/10.1115/1.2812385

    Article  Google Scholar 

  73. Ullah I, Zhang S, Zhang Q, Wang R (2021) Numerical investigation on serrated chip formation during high-speed milling of ti-6Al-4V alloy. J Mater Process 71:589–603. https://doi.org/10.1016/j.jmapro.2021.09.056

    Article  Google Scholar 

  74. El-Axir M (2002) A method of modeling residual stress distribution in turning for different materials. Int J Mach Tools Manuf 42:1055–1063. https://doi.org/10.1016/S0890-6955(02)00031-7

    Article  Google Scholar 

  75. Ulutan D, Arisoy Y, Özel T, Mears L (2014) Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function. Procedia CIRP 13:365–370. https://doi.org/10.1016/j.procir.2014.04.062

    Article  Google Scholar 

  76. Arunachalam R, Mannan M, Spowage A (2004) Residual stress and surface roughness when facing age hardened inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44:879–887. https://doi.org/10.1016/j.ijmachtools.2004.02.016

    Article  Google Scholar 

  77. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. Int J Mach Tools Manuf 45:131–136. https://doi.org/10.1016/j.ijmachtools.2004.08.002

    Article  Google Scholar 

  78. Navas V, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57. https://doi.org/10.1016/j.ijmachtools.2012.05.008

    Article  Google Scholar 

  79. Zhao Y, Xu J, Cai L, Shi W, Liu Z (2016) Stiffness and damping model of bolted joint based on the modified three-dimensional fractal topography. P I Mech Eng C-J Mec 231(2):279–293. https://doi.org/10.1177/0954406216631577

    Article  Google Scholar 

  80. Ibrahim R, Pettit C (2005) Uncertainties and dynamic problems of bolted joints and other fasteners. J Sound Vib 279(3–5):857–936. https://doi.org/10.1016/j.jsv.2003.11.064

    Article  Google Scholar 

  81. Zhao T, Hu J (2016) A study on the nonlinear vibration of bolted joints in CNC machine tools. 2016 International Conference on Cybernetics, Robotics and Control (CRC) 2016:48–54. https://doi.org/10.1109/CRC.2016.020

  82. Dong Y, Hess D (2000) Shock-induced loosening of dimensionally non-conforming threaded fasteners. J Sound Vib 231(2):451–459. https://doi.org/10.1006/jsvi.1999.2635

    Article  Google Scholar 

  83. Pai N, Hess D (2002) Three-dimensional finite element analysis of threaded fastener loosening due to dynamic shear load. Eng Fail Anal 9(4):383–402. https://doi.org/10.1016/S1350-6307(01)00024-3

    Article  Google Scholar 

  84. Li Y, Zhang G, Zhang Z, Wang P (2018) A modelling method of bolt joints based on basic characteristic parameters of joint surfaces. IOP Conference Series: Earth and Environmental Science 113:012050. https://doi.org/10.1088/1755-1315/113/1/012050

    Article  Google Scholar 

  85. Liu H, Wu J, Liu K, Kuang K, Luo Q, Liu Z, Wang Y (2019) Pretightening sequence planning of anchor bolts based on structure uniform deformation for large CNC machine tools. Int J Mach Tools Manuf 136:1–18. https://doi.org/10.1016/j.ijmachtools.2018.09.002

    Article  Google Scholar 

  86. Wang Y, Wu J, Liu H, Xu S (2016) Modeling and numerical analysis of multi-bolt elastic interaction with bolt stress relaxation. P I Mech Eng C-J Mec 230(15):2579–2587. https://doi.org/10.1177/0954406215615155

    Article  Google Scholar 

  87. Hu M, Ma J, Jin T, Zhao W, Zhang W (2016) The optimization method of the layout of the anchor bolt of machine tools considering the variation of the moving load. Modul Mach Tool Autom Manufac Tech 1001–2265:0150–4. https://doi.org/10.13462/j.cnki.mmtamt.2016.04.040

  88. Zhang Z, Xiao Y, Xie Y, Su Z (2019) Effects of contact between rough surfaces on the dynamic responses of bolted composite joints: multiscale modeling and numerical simulation. Compos Struct 211:13–23. https://doi.org/10.1016/j.compstruct.2018.12.019

    Article  Google Scholar 

  89. Zhao Y, Yang C, Cai L, Shi W, Liu Z (2016) Surface contact stress-based nonlinear virtual material method for dynamic analysis of bolted joint of machine tool. Precis Eng 43:230–240. https://doi.org/10.1016/j.precisioneng.2015.08.002

    Article  Google Scholar 

  90. Jiang K, Liu Z, Yang C, Zhang C, Tian Y, Zhang T (2022) Effects of the joint surface considering asperity interaction on the bolted joint performance in the bolt tightening process. Tribol Int 167:107408. https://doi.org/10.1016/j.triboint.2021.107408

    Article  Google Scholar 

  91. Mi L, Yin G, Sun M, Wang X (2012) Effects of preloads on joints on dynamic stiffness of a whole machine tool structure. J Mech Sci Technol 26(2):495–508. https://doi.org/10.1007/s12206-011-1033-4

    Article  Google Scholar 

  92. Alkelani A, Housari B, Nassar S (2008) A proposed model for creep relaxation of soft gaskets in bolted joints at room temperature. Press Vess-T ASME 130(1):011211. https://doi.org/10.1115/1.2826430

    Article  Google Scholar 

  93. Delhomme F, Debicki G (2010) Numerical modelling of anchor bolts under pullout and relaxation tests. Constr Build Mater 24(7):1232–1238. https://doi.org/10.1016/j.conbuildmat.2009.12.015

    Article  Google Scholar 

  94. Liu H, Wu j, Wang Y (2015) Impact of anchor bolts creep relaxation on geometric accuracy decline of large computer numerical control machine tool. Journal of xi’an jiaotong university 49(9):14–19. https://doi.org/10.7652/xjtuxb201509003

    Article  Google Scholar 

  95. Xu H, Wang F, Cheng X (2007) Pullout creep properties of grouted soil anchors. J Cent South Univ 14(S1):474–477. https://doi.org/10.1007/s11771-007-0310-y

    Article  Google Scholar 

  96. Todd M, Nichols J, Nichols C, Virgin L (2004) An assessment of modal property effectiveness in detecting bolted joint degradation: theory and experiment. J Sound Vib 275(3–5):1113–1126. https://doi.org/10.1016/j.jsv.2003.10.037

    Article  Google Scholar 

  97. Zhang W, Liu X, Huang Z, Zhu J (2021) Dynamic parameters identification for sliding joints of surface grinder based on deep neural network modeling. Adv Mech Eng 13(2):1–15. https://doi.org/10.1177/1687814021992181

    Article  Google Scholar 

  98. Li S, Gao H, Liu Q, Liu B (2018) Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure. AIP Adv 8:35116. https://doi.org/10.1063/1.5021823

    Article  Google Scholar 

  99. Ren Y, Beards C (1998) Identification of ‘Effective’ linear joints using coupling and joint identification techniques. J Vib Acoust 120(2):331–338. https://doi.org/10.1115/1.2893835

    Article  Google Scholar 

  100. Greenwood J, Williamson J (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295(1442):300–319. https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  101. Pullen J, Williamson J (1972) On the plastic contact of rough surfaces. Proc R Soc Lond A 327:159–173. https://doi.org/10.1098/rspa.1972.0038

    Article  Google Scholar 

  102. Chang W, Etsion I, Bogy D (1987) An elastic-plastic model for the contact of rough surfaces. J Tribol 109(2):257–263. https://doi.org/10.1115/1.3261348

    Article  Google Scholar 

  103. Xu Y, Zhang D (2016) Modeling and simulation of the equivalent material damping loss factor of fixed joint interface. Adv Mech Eng 8(8):1–9. https://doi.org/10.1177/1687814016665552

    Article  Google Scholar 

  104. Tian Y, Liu Z, Dong X (2018) Bearing deformation of heavy-duty machine tool-foundation systems and deformation detection methods. P I Mech Eng C-J Mec 233(9):3232–3245. https://doi.org/10.1177/0954406218813396

    Article  Google Scholar 

  105. Zhao Y, Maietta D, Chang L (2000) An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol 122(1):86–93. https://doi.org/10.1115/1.555332

    Article  Google Scholar 

  106. Kucharski S, Klimczak T, Polijaniuk A, Kaczmarek J (1994) Finite-elements model for the contact of rough surfaces. Wear 177(1):1–13. https://doi.org/10.1016/0043-1648(94)90112-0

    Article  Google Scholar 

  107. Yang D, Liu Z (2015) Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill. Int J Mach Tools Manuf 91:43–53. https://doi.org/10.1016/j.ijmachtools.2014.11.009

    Article  Google Scholar 

  108. Bryan J (1990) International status of thermal error research. CIRP Ann 39(2):645–656. https://doi.org/10.1016/s0007-8506(07)63001-7

    Article  Google Scholar 

  109. Mayr J, Jedrzejewski J, Uhlmann E, Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann 61(2):771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  110. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38. https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  111. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review. Int J Mach Tools Manuf 40(9):1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-9

    Article  Google Scholar 

  112. Mian N, Fletcher S, Longstaff A, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37(2):372–379. https://doi.org/10.1016/j.precisioneng.2012.10.006

    Article  Google Scholar 

  113. Tanabe I, Orimo T (2001) Countermeasure for reducing thermal deformation of a coordinate measuring machine caused by ambient temperature fluctuation: conservation of energy for protecting the earth. Transac Japan Soc Mechanic Eng C67(662):3357–3362. https://doi.org/10.1299/kikaic.67.3357

    Article  Google Scholar 

  114. Luo F, Song D (2013) Study on the influence of ambient temperature on spindle box of the wheel groove milling machine based on ANSYS. Appl Mech Mater 475–476:1513–1516. https://doi.org/10.4028/www.scientific.net/AMM.475-476.1513

    Article  Google Scholar 

  115. Fujishima M, Narimatsu K, Irino N, Ido Y (2018) Thermal displacement reduction and compensation of a turning center. CIPP J Manuf Sci Tec 22:111–115. https://doi.org/10.1016/j.cirpj.2018.04.003

    Article  Google Scholar 

  116. Groos L, Held C, Keller F, Wendt K, Franke M, Gerwien N (2020) Mapping and compensation of geometric errors of a machine tool at different constant ambient temperatures. Precis Eng 63:10–17. https://doi.org/10.1016/j.precisioneng.2020.01.001

    Article  Google Scholar 

  117. Kim B, Song Y, Park C (2011) Robust thermal error modeling and compensation for a nano level thermal drift in a high precision lathe. Int J Precis Eng Manuf 12(4):657–661. https://doi.org/10.1007/s12541-011-0085-9

    Article  Google Scholar 

  118. Moriwaki T, Shamoto E (1998) Analysis of thermal deformation of an ultraprecision air spindle system. CIRP Ann 47(1):315–319. https://doi.org/10.1016/S0007-8506(07)62841-8

    Article  Google Scholar 

  119. Tanabe I, Takada K (1994) Thermal deformation of machine tool structures using resin concrete (thermal behaviour of concrete bed of machine tool in fluctuating ambient temperature). JSME Int J C37(2):384–389. https://doi.org/10.1299/jsmec1993.37.384

    Article  Google Scholar 

  120. Li F, Li T, Jiang Y, Wang H, Ehmann K (2019) Explicit error modeling of dynamic thermal errors of heavy machine tool frames caused by ambient temperature fluctuations. J Manuf Process 48:320–338. https://doi.org/10.1016/j.jmapro.2019.10.018

    Article  Google Scholar 

  121. Пpoтникoв A, Li C, Yu L (1987) Precision and reliability of CNC machine tools (Chinese). China machine press, Beijing

    Google Scholar 

  122. Wang Y, Wu J, Liu K, Liu H, Liu Z, Lian M (2019) Quantitative evaluation and error sensitivity analysis of accuracy retentivity of CNC machine tools (Chinese). J Mech Eng 55(005):130–136. https://doi.org/10.3901/JME.2019.05.130

  123. Guo S, Tang S, Zhang D (2019) A recognition methodology for the key geometric errors of a multi-axis machine tool based on accuracy retentivity analysis. Complexity 2019:1–21. https://doi.org/10.1155/2019/8649496

    Article  Google Scholar 

  124. Wang Y, Wu J, Liu H, Kang K, Liu K (2018) Geometric accuracy long-term continuous monitoring using strain gauges for CNC machine tools. Int J Adv Manuf Tech 98(5–8):1145–1153. https://doi.org/10.1007/s00170-018-2337-7

    Article  Google Scholar 

  125. Jone E, George J (2006) Aging, maintenance, and reliability-approaches to preserving equipment health and extending equipment life. IEEE Power Energy M 4(3):59–67. https://doi.org/10.1109/MPAE.2006.1632455

    Article  Google Scholar 

  126. Lee W, Wu H, Yun H, Kim H, Jun M, Sutherland J (2019) Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 80:506–511. https://doi.org/10.1016/j.procir.2018.12.019

    Article  Google Scholar 

  127. Hou Y, Chen D, Zheng L (1985) Effect of surface topography of scraped machine tool guideways on their tribological behaviour. Tribol Int 18(2):125–129. https://doi.org/10.1016/0301-679X(85)90054-4

    Article  Google Scholar 

  128. Moreno M, Ruiz J, Azpeitia D, González J, Fernández L (2020) Friction improvement via grinding wheel texturing by dressing. Int J Adv Manuf Tech 107(11–12):4939–4954. https://doi.org/10.1007/s00170-020-05350-6

    Article  Google Scholar 

  129. Nallasamy P, Saravanakumar N, Nagendran S, Suriya E, Yashwant D (2014) Tribological investigations on Mos2-based nanolubricant for machine tool slideways. P I Mech Eng J-J Eng 229(5):559–567. https://doi.org/10.1177/1350650114556394

    Article  Google Scholar 

  130. Schneider Y (1984) Formation of surfaces with uniform micropatterns on precision machine and instruments parts. Precis Eng 6(4):219–225. https://doi.org/10.1016/0141-6359(84)90007-2

    Article  Google Scholar 

  131. Hsieh T, Jywe W, Huang H, Chen S (2011) Development of a laser-based measurement system for evaluation of the scraping workpiece quality. Opt Lasers Eng 49(8):1045–1053. https://doi.org/10.1016/j.optlaseng.2011.04.005

    Article  Google Scholar 

  132. Serdobintsev Y, Kukhtik M, Kuach D (2021) A study of the influence of surface layer properties on the tribotechnical characteristics of plain machine tool slideways. 6th Int Conf Indus Eng 2021:1236–1245. https://doi.org/10.1007/978-3-030-54814-8

  133. Yue H, Deng J, Ge D, Li X, Zhang Y (2019) Effect of surface texturing on tribological performance of sliding guideway under boundary lubrication. J Manuf Process 47:172–182. https://doi.org/10.1016/j.jmapro.2019.09.031

    Article  Google Scholar 

  134. Fan J, Tao H, Wu C, Pan R, Tang Y, Li Z (2018) Kinematic errors prediction for multi-axis machine tools’ guideways based on tolerance. Int J Adv Manuf Tech 98(5):1131–1144. https://doi.org/10.1007/s00170-018-2335-9

    Article  Google Scholar 

  135. Wang Y, Liu B, Guo Z (2017) Wear resistance of machine tools’ bionic linear rolling guides by laser cladding. Opt Lasers Eng 91:55–62. https://doi.org/10.1016/j.optlastec.2016.12.015

    Article  Google Scholar 

  136. Han J, Feng H, Ou Y, Liang Y, Yin A, Zu L (2016) Measurement and control system design of precision retentivity of rolling linear guide pair. Int J Mater Mech Manuf 4(1):74–79. https://doi.org/10.7763/IJMMM.2016.V4.228

    Article  Google Scholar 

  137. Tsai P, Cheng C, Cheng Y (2017) A novel method based on operational modal analysis for monitoring the preload degradation of linear guideways in machine tools. Mechanic Eng J 4(2):16–00480. https://doi.org/10.1299/mej.16-00480

    Article  Google Scholar 

  138. Majda P (2012) Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis Eng 36(3):369–378. https://doi.org/10.1016/j.precisioneng.2012.02.001

    Article  Google Scholar 

  139. Cheng D, Yang W, Park J, Park T, Kim S, Kim G, Park C (2014) Friction experiment of linear motion roller guide THK SRG25. Int J Precis Eng Manuf 15(3):545–551. https://doi.org/10.1007/s12541-014-0369-y

    Article  Google Scholar 

  140. Syamsul H, Oiwa T, Tanaka T, Asama J (2014) Positioning error improvement based on ultrasonic oscillation for a linear motion rolling bearing during sinusoidal motion. Precis Eng 38(3):617–627. https://doi.org/10.1016/j.precisioneng.2014.02.012

    Article  Google Scholar 

  141. Chang J, Chao J, Huang Y, Chen J (2010) Prognostic experiment for ball screw preload loss of machine tool through the Hilbert-Huang transform and multiscale entropy method. The 2010 IEEE International Conference on Information and Automation 2010:376–380. https://doi.org/10.1109/ICINFA.2010.5512064

  142. Möhring H, Bertram O (2012) Integrated autonomous monitoring of ball screw drives. CIRP Ann 61(1):355–358. https://doi.org/10.1016/j.cirp.2012.03.138

    Article  Google Scholar 

  143. Benker M, Kleinwort R, Zäh M (2019) Estimating remaining useful life of machine tool ball screws via probabilistic classification. IEEE International Conference on Prognostics and Health Management (ICPHM) 2019:1–7. https://doi.org/10.1109/ICPHM.2019.8819445

    Article  Google Scholar 

  144. Tsai P, Cheng C, Hwang Y (2014) Ball screw preload loss detection using ball pass frequency. Mech Syst Signal Pr 48(1–2):77–91. https://doi.org/10.1016/j.ymssp.2014.02.017

    Article  Google Scholar 

  145. Wen J, Gao H, Liu Q, Hong X, Sun Y (2018) A new method for identifying the ball screw degradation level based on the multiple classifier system. Measurement 130:118–127. https://doi.org/10.1016/j.measurement.2018.08.005

    Article  Google Scholar 

  146. Mauro S, Pastorelli S, Johnston E (2015) Influence of controller parameters on the life of ball screw feed drives. Adv Mech Eng 7(8):1–11. https://doi.org/10.1177/1687814015599728

    Article  Google Scholar 

  147. Lin C, Jay F (2007) Model-based design of motorized spindle systems to improve dynamic performance at high speeds. J Manuf Process 9(2):94–108. https://doi.org/10.1016/s1526-6125(07)70111-1

    Article  Google Scholar 

  148. Brecher C, Spachtholz G, Paepenmüller F (2007) Developments for high performance machine tool spindles. CIRP Ann 56(1):395–399. https://doi.org/10.1016/j.cirp.2007.05.092

    Article  Google Scholar 

  149. Jiang D, Wang T, Jiang Y, Liu L, Hu M (2010) Reliability assessment of machine tool spindle bearing based on vibration feature. International Conference on Digital Manufacturing & Automation 2010:154–157. https://doi.org/10.1109/ICDMA.2010.105

    Article  Google Scholar 

  150. Wang R, Zhang Z, Xia Z, Miao J, Guo Y (2019) A new approach for rolling bearing fault diagnosis based on EEMD hierarchical entropy and improved CS-SVM. Prognostics and System Health Management Conference 2019:1–6. https://doi.org/10.1109/PHM-Qingdao46334.2019.8942988

    Article  Google Scholar 

  151. Rastegari A (2017) Vibration analysis of machine tool spindle units. 12th World Congress on Engineering Asset Management & 13th International Conference on Vibration Engineering and Technology of Machinery 2017:511–522. https://doi.org/10.1007/978-3-319-95711-1_51

  152. Choudhury A, Tandon N (2000) Application of acoustic emission technique for the detection of defects in rolling element bearings. Tribol Int 33(1):39–45. https://doi.org/10.1016/S0301-679X(00)00012-8

    Article  Google Scholar 

  153. Katter J, Tu J (1996) Bearing condition monitoring for preventive maintenance in a production environment. Tribol T 39(4):936–942. https://doi.org/10.1080/10402009608983615

    Article  Google Scholar 

  154. Tu J (1995) Thermoelastic instability monitoring for preventing spindle bearing seizure. Tribol T 38(1):11–18. https://doi.org/10.1080/10402009508983374

    Article  Google Scholar 

  155. Li P, Liu Y, Wang Z, Zhang W, Zhou X (2016) Process improvement of CNC lathe bed casting structure (Chinese). Modern Cast Iron 36(1):74–78. https://doi.org/10.3969/j.issn.1003-8345.2016.01.012

    Article  Google Scholar 

  156. Wang R, Sui X, Wei D (2016) Research and analysis of residual stress measurement of ram casting in gantry machine center. 3rd International Conference on Materials Engineering, Manufacturing Technology and Control 2016:380–384. https://doi.org/10.2991/icmemtc-16.2016.73

  157. Mittal S, Liu C (1998) A method of modeling residual stresses in superfinish hard turning. Wear 218(1):21–33. https://doi.org/10.1016/S0043-1648(98)00201-4

    Article  Google Scholar 

  158. Soori M, Asmael M (2020) Mechanical behavior of materials in metal cutting operations, a review. J New Technol Mater 10(2):79–89. https://www.researchgate.net/publication/345724625

  159. Sasahara H, Obikawa T, Shirakashi T (2004) Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models. Int J Mach Tools Manuf 44:815–822. https://doi.org/10.1016/j.ijmachtools.2004.01.002

    Article  Google Scholar 

  160. Li J, Jing L, Chen M (2009) An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J Mater Process Tech 209(9):4515–4520. https://doi.org/10.1016/j.jmatprotec.2008.10.042

    Article  Google Scholar 

  161. Li Y, Shi Z, Lin J, Yang Y, Saillard P, Said R (2018) Effect of machining-induced residual stress on springback of creep age formed AA2050 plates with asymmetric creep-ageing behaviour. Int J Mach Tools Manuf 132:113–122. https://doi.org/10.1016/j.ijmachtools.2018.05.003

    Article  Google Scholar 

  162. Reimer A, Fitzpatrick S, Luo X, Zhao J (2017) Numerical investigation of mechanical induced stress during precision end milling hardened tool steel. Solid State Phenom 261:362–369. https://doi.org/10.4028/www.scientific.net/SSP.261.362

    Article  Google Scholar 

  163. Attanasio A, Ceretti E, Cappellini C, Giardini C (2011) Residual stress prediction by means of 3D FEM simulation. Adv Mat Res 223(2011):431–438. https://doi.org/10.4028/www.scientific.net/AMR.223.431

    Article  Google Scholar 

  164. Liu H, Sun Y, Lu Z (2009) 3D finite element simulation and experiment of residual stress on the cutting surface. In 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies 7282(1):728220–728225. https://doi.org/10.1117/12.830894

  165. Chen M, Xu B (2012) Bolted joint looseness damage detection using electromechanical impedance measurements by PZT sensors. In Third International Conference on Smart Materials and Nanotechnology in Engineering 8409(1):840925–840929. https://doi.org/10.1117/12.923329

    Article  Google Scholar 

  166. Doebling S, Farrar C, Prime M (1998) A summary review of vibration-based damage identification methods. The Shock and Vibration Digest 30(2):91–105. https://doi.org/10.1177/058310249803000201

    Article  Google Scholar 

  167. Nichols J, Todd M, Wait J (2003) Using state space predictive modeling with chaotic interrogation in detecting joint preload loss in a frame structure experiment. Smart Mater Struct 12(4):580–601. https://doi.org/10.1088/0964-1726/12/4/310

    Article  Google Scholar 

  168. Bailey J, Jeelani S, Becker S (1976) Surface integrity in machining AISI 4340 steel. J Eng Technol 98(3):999–1006. https://doi.org/10.1115/1.3439063

    Article  Google Scholar 

  169. Li W, Lu C, Yang Z (2013) The research of the assembly precision of CNC machine tools considering the joint surface characteristics. Appl Mech Mater 397–400:198–201. https://doi.org/10.4028/www.scientific.net/AMM.397-400.198

    Article  Google Scholar 

  170. Shen J, Xu P, Yu Y (2019) Dynamic characteristics analysis and finite element simulation of steel–BFPC machine tool joint surface. J Manuf Sci E-T ASME 142(1):011006. https://doi.org/10.1115/1.4045417

    Article  Google Scholar 

  171. Shi Y, Zhao X, Zeng L, Wang H, Zhang D (2011) Dynamic characteristic analysis and structural modification of a 5-axis horizontal machining center considering joint surface. Mater Sci Forum 697–698:513–516. https://doi.org/10.4028/www.scientific.net/MSF.697-698.513

    Article  Google Scholar 

  172. Omar O, Wardany T, Ng E, Elbestawi M (2007) An improved cutting force and surface topography prediction model in end milling. Int J Mach Tools Manuf 47:1263–1275. https://doi.org/10.1016/j.ijmachtools.2006.08.021

    Article  Google Scholar 

  173. Jiang B, Zhang K, Yang L, Zhang M, Wang S (2014) Machining error and milling process control methods for joint surface of machine tool. Mater Sci Forum 800–801:666–671. https://doi.org/10.4028/www.scientific.net/MSF.800-801.666

    Article  Google Scholar 

  174. Kartini (2020) Finite element method for modeling of real rough surface. International Journal of Advanced Research in Engineering and Technology 11(7):134–149. https://doi.org/10.34218/IJARET.11.7.2020.015

  175. Abdulshahed A, Longstaff A, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168. https://doi.org/10.1016/j.asoc.2014.11.012

    Article  Google Scholar 

  176. Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393. https://doi.org/10.1016/j.ijmachtools.2009.11.002

    Article  Google Scholar 

  177. Huang J, Zhou Z, Liu M, Zhang E, Chen M, Pham D, Ji C (2015) Real-time measurement of temperature field in heavy-duty machine tools using fiber Bragg grating sensors and analysis of thermal shift errors. Mechatronics 31:16–21. https://doi.org/10.1016/j.mechatronics.2015.04.004

    Article  Google Scholar 

  178. Fujishima M, Narimatsu K, Irino N, Mori M, Ibaraki S (2019) Adaptive thermal displacement compensation method based on deep learning. CIRP J Manuf Sci Technol 25:22–25. https://doi.org/10.1016/j.cirpj.2019.04.002

    Article  Google Scholar 

  179. Wąsik M, Kolka A (2017) Machining accuracy improvement by compensation of machine and workpiece deformation. Procedia Manufacturing 11:2187–2194. https://doi.org/10.1016/j.promfg.2017.07.365

    Article  Google Scholar 

  180. Kegg R (1984) One-line machine and process diagnostics. CIRP Ann 33(2):469–473. https://doi.org/10.1016/s0007-8506(16)30168-8

    Article  Google Scholar 

  181. Li X, Li D, Lao Y, Zhang R, Han Y, Yao X (2020) Overview of machine tool error detection technology. J Phys: Conf Ser 1550:032152. https://doi.org/10.1088/1742-6596/1550/3/032152

    Article  Google Scholar 

  182. Han Z, Jin H, Liu Y, Fu H (2013) A review of geometric error modeling and error detection for CNC machine tools. Appl Mech Mater 303–306:627–631. https://doi.org/10.4028/www.scientific.net/AMM.303-306.627

    Article  Google Scholar 

  183. Frankowiak M, Grosvenor R, Prickett P (2005) A review of the evolution of microcontroller-based machine and process monitoring. Int J Mach Tools Manuf 45(4–5):573–582. https://doi.org/10.1016/j.ijmachtools.2004.08.018

    Article  Google Scholar 

  184. Guo S, Pang B, Jiang G, Chen H, Li Z (2020) Time-varying reliability modelling and quasi-static accuracy optimization of precision CNC machine tools. J Phys: Conf Ser 1654:012022. https://doi.org/10.1088/1742-6596/1654/1/012022

    Article  Google Scholar 

  185. Zhang Z, Cai L, Cheng Q, Liu Z, Gu P (2016) A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools. J Intell Manuf 30(2):495–519. https://doi.org/10.1007/s10845-016-1260-8

    Article  Google Scholar 

  186. Xing K, Achiche S, Mayer J (2019) Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures. Int J Mach Tools Manuf 138:80–93. https://doi.org/10.1016/j.ijmachtools.2018.12.002

    Article  Google Scholar 

Download references

Funding

This work was supported by Jinan University and Institute Innovation Team Program (Grant No. 2020GXRC025), the National New Material Production and Application Demonstration Platform Construction Program (Grant No. 2020–370104-34–03-043952), the Taishan Scholar Project of Shandong Province (Grant No. ts201712002), and the Science Education Industry Integration Pilot Project of Shandong Province (Grant nos.2020KJC-ZD05).

Author information

Authors and Affiliations

Authors

Contributions

WL contributed to the paper structures and wrote the original manuscript. SZ provided the methodology, reviewed the manuscript, and provided the funding. JL provided suggestions for article structure and reviewed the manuscript. YX reviewed the manuscript. JW reviewed the manuscript. YS reviewed the manuscript.

Corresponding author

Correspondence to Song Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors declared that all the authors listed in the article have no objections.

Consent for publication

The authors confirm that this work is not published before and do not consider other places. All co-authors have approved its publication. The authors agree to publish the article in Springer’s corresponding English-language journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, S., Lin, J. et al. Advancements in accuracy decline mechanisms and accuracy retention approaches of CNC machine tools: a review. Int J Adv Manuf Technol 121, 7087–7115 (2022). https://doi.org/10.1007/s00170-022-09720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09720-0

Keywords

Navigation