Skip to main content
Log in

EC-RFERNet: an edge computing-oriented real-time facial expression recognition network

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Edge computing has shown significant successes in addressing the security and privacy issues related to facial expression recognition (FER) tasks. Although several lightweight networks have been proposed for edge computing, the computing demands and memory access cost (MAC) imposed by these networks hinder their deployment on edge devices. Thus, we propose an edge computing-oriented real-time facial expression recognition network, called EC-RFERNet. Specifically, to improve the inference speed, we devise a mini-and-fast (MF) block based on the partial convolution operation. The MF block effectively reduces the MAC and parameters by processing only a part of the input feature maps and eliminating unnecessary channel expansion operations. To improve the accuracy, the squeeze-and-excitation (SE) operation is introduced into certain MF blocks, and the MF blocks at different levels are selectively connected by the harmonic dense connection. SE operation is used to complete the adaptive channel weighting, and the harmonic dense connection is used to exchange information between different MF blocks to enhance the feature learning ability. The MF block and the harmonic dense connection together constitute the harmonic-MF module, which is the core component of EC-RFERNet. This module achieves a balance between accuracy and inference speed. Five public datasets are used to test the validity of EC-RFERNet and to demonstrate its competitive performance, with only 2.25 MB and 0.55 million parameters. Furthermore, one human–robot interaction system is constructed with a humanoid robot equipped with the Raspberry Pi. The experimental results demonstrate that EC-RFERNet can provide an effective solution for practical FER applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All datasets are freely available in public repositories. RAF-DB: http://www.whdeng.cn/raf/model1.html, FER2013: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data, CK+ : http://www.jeffcohn.net/Resources/, AffectNet: http://mohammadmahoor.com/affectnet/, SFEW: https://cs.anu.edu.au/few/AFEW.html.

References

  1. Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. 13(3), 1195–1215 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. Rouast, P.V., Adam, M.T.P., Chong, R.: Deep learning for human affect recognition: Insights and new developments. IEEE Trans. Affect. Comput. 12(2), 524–543 (2021)

    Article  Google Scholar 

  3. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Int. Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, https://arxiv.org/abs/1409.1556(2014)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The 2016 conference on computer vision and pattern recognition (CVPR), pp 770–778 (2016).

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  7. Mohammadian, F.R., Mahlouji, M., Shahidinejad, A.: Real-time face detection using circular sliding of the gabor energy and neural networks. SIViP 16, 1081–1089 (2022)

    Article  Google Scholar 

  8. Wang, X., Zhang, L., Huang, W.B., Wang, S.Y., Wu, H., He, J., Song, A.G.: Deep convolutional networks with tunable speed–accuracy tradeoff for human activity recognition using wearables. IEEE Trans. Instrum. Meas. 71, 2503912 (2022)

    Google Scholar 

  9. Zarif, N.E., Montazeri, L., Leduc-Primeau, F., Sawan, M.: Mobile-optimized facial expression recognition techniques. IEEE Access 9, 101172–101185 (2021)

    Article  Google Scholar 

  10. Yang, J., Qian, T., Zhang, F., Khan, S.U.: Real-time facial expression recognition based on edge computing. IEEE Access 9, 76178–76190 (2021)

    Article  Google Scholar 

  11. Nan, Y.H., Ju, J.G., Hua, Q.Y., Zhang, H.M., Wang, B.: A-MobileNet: an approach of facial expression recognition. Alex. Eng. J. 61(6), 4435–4444 (2022)

    Article  Google Scholar 

  12. Ma, H., Celik, T.: FER-Net: Facial expression recognition using densely connected convolutional network. Electron. Lett. 55(4), 184–186 (2019)

    Article  ADS  Google Scholar 

  13. Chen, J. R., Kao, S., He, H., Zhuo, W. P., Wen, S., Lee, C., Chan, S. G.: Run, don’t walk: chasing higher flops for faster neural networks. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031 (2023)

  14. Chao, P., Kao, C.-Y., Ruan, Y., Huang, C.-H., Lin, Y.-L.: HarDNet: a low memory traffic network. In: The 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3551–3560 (2019)

  15. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  PubMed  Google Scholar 

  16. Howard, A. G., Zhu, M., Chen, B.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR, https://arxiv.org/abs/1704.04861(2017)

  17. Lu, X., Zhang, H., Zhang, Q., Han, X.: A lightweight network for expression recognition based on adaptive mixed residual connections. In: The 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), pp 311–315 (2022).

  18. Zhou, L., Li, S., Wang, Y., Liu, J.: SDNET: Lightweight facial expression recognition for sample disequilibrium. In: The 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2415–2419 (2022)

  19. Fang, B., Chen, G., He, J.: Ghost-based convolutional neural network for effective facial expression recognition. In: The 2022 International Conference on Machine Learning and Knowledge Engineering, pp. 121–124 (2022)

  20. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1577–1586 (2020)

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. -C.: MobileNetV2: inverted residuals and linear bottlenecks. In: The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

  22. Sun, Q., Liang, L., Dang, X.H., Chen, Y.: Deep learning-based dimensional emotion recognition combining the attention mechanism and global second-order feature representations. Comput. Electr. Eng. 104, 108469 (2022)

    Article  Google Scholar 

  23. Zhang, F., Li, Q., Ren, Y., Xu, H., Song, Y., Liu, S.: An expression recognition method on robots based on MobilenetV2-SSD. In: The 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 118–122 (2019)

  24. Huang, Z., Yang, S., Zhou, M.C., Gong, Z., Abusorrah, A., Lin, C., Huang, Z.: Making accurate object detection at the edge: review and new approach. Artif. Intell. Rev. 55(3), 2245–2274 (2022)

    Article  Google Scholar 

  25. Passalis, N., Raitoharju, J., Tefas, A., Gabbouj, M.: Adaptive inference using hierarchical convolutional bag-of-features for low-power embedded platforms. In: The 2019 IEEE International Conference on Image Processing, pp 3048–3052 (2019)

  26. Wahab, M.N.A., Nazir, A., Zhen, A.T., Mohd Noor, M.H., Akbar, M.F., Mohamed, A.S.A.: Efficientnet-lite and hybrid cnn-knn implementation for facial expression recognition on raspberry Pi. IEEE Access 9, 134065–134080 (2021)

    Article  Google Scholar 

  27. Tan, M. X., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: The 36th International Conference on Machine Learning, Long Beach, 97, pp. 6105–6114 (2019)

  28. Riaz, M.N., Shen, Y., Sohail, M., Guo, M.: eXnet: an efficient approach for emotion recognition in the wild. Sensors 20(4), 1087 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Nitish, S., Geoffrey, H., Alex, K., Ilya, S., Ruslan, S.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: The 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001)

  31. Li, S., Deng W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: The 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2584–2593 (2017)

  32. Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2019)

    Article  Google Scholar 

  33. Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: The 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 94–101 (2010)

  34. Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: data, evaluation protocol, and benchmark. In: The 2011 IEEE International Conference on Computer Vision Workshops, pp. 2106–2112 (2011)

  35. Wang, R. J., Li, X., Ling, C. X.: Pelee: A real-time object detection system on mobile devices. In: The 32nd International Conference on Neural Information Processing Systems, pp. 1967–1976 (2018)

  36. Tan, M. X., Le, Q. V.: MixConv: Mixed depthwise convolutional kernels. In: The 30th British Machine Vision Conference (2019)

  37. Ma, H., Celik, T., Li, H.C.: Lightweight attention convolutional neural network through network slimming for robust facial expression recognition. SIViP 15, 1507–1515 (2021)

    Article  Google Scholar 

  38. Huo, H., Yu, Y., Liu, Z.: Facial expression recognition based on improved depthwise separable convolutional network. Multimed. Tools Appl. 82, 18635–18652 (2023)

    Article  PubMed  Google Scholar 

  39. Saurav, S., Gidde, P., Saini, R., Singh, S.: Dual integrated convolutional neural network for real-time facial expression recognition in the wild. Vis. Comput. 38, 1083–1096 (2022)

    Article  Google Scholar 

  40. Shao, J., Qian, Y.S.: Three convolutional neural network models for facial expression recognition in the wild. Neurocomputing 355, 82–92 (2019)

    Article  Google Scholar 

  41. Ji, L.P., Wu, S.L., Gu, X.P.: A facial expression recognition algorithm incorporating SVM and explainable residual neural network. Signal Image Video Process 17, 4245–4254 (2023)

    Article  Google Scholar 

  42. Wen, G., Chang, T., Li, H., Jiang, L.: Dynamic objectives learning for facial expression recognition. IEEE Trans. Multimedia 22(11), 2914–2925 (2020)

    Article  Google Scholar 

  43. Li, Y., Zeng, J., Shan, S., Chen, X.: Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Trans. Image Process. 28(5), 2439–2450 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wen, Z., Lin, W., Wang, T., Xu, G.: Distract your attention: multi-head cross attention network for facial expression recognition. Biomimetics 8(2), 199 (2021)

    Article  Google Scholar 

  45. Zhang, J., Yu, H.: Improving the facial expression recognition and its interpretability via generating expression pattern-map. Pattern Recogn. 129, 108737 (2022)

    Article  MathSciNet  Google Scholar 

  46. Saurav, S., Saini, R, Singh, S.: A dual-channel ensembled deep convolutional neural network for facial expression recognition in the wild. Comput. Intell. 39(5), 666–706 (2023)

    Article  Google Scholar 

  47. Xie, S.Y., Hu, H.F., Wu, Y.B.: Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition. Pattern Recogn. 92, 177–191 (2019)

    Article  ADS  Google Scholar 

  48. Sun, W.Y., Zhao, H.T., Jin, Z.: A visual attention-based ROI detection method for facial expression recognition. Neurocomputing 296, 12–22 (2018)

    Article  Google Scholar 

  49. Gogić, I., Manhart, M., Pandžić, I.S., Ahlberg, J.: Fast facial expression recognition using local binary features and shallow neural networks. Vis. Comput. 36, 97–112 (2020)

    Article  Google Scholar 

  50. Wang, K., Peng, X., Yang, J., Meng, D., Qiao, Y.: Region attention networks for pose and occlusion robust facial expression recognition. IEEE Trans. Image Process. 29, 4057–4069 (2020)

    Article  ADS  Google Scholar 

  51. Saurav, S., Saini, K.A., Saini, R., Singh, S.: Deep learning inspired intelligent embedded system for haptic rendering of facial emotions to the blind. Neural Comput. Appl. 34, 4595–4623 (2022)

    Article  Google Scholar 

  52. Wu, Y.R., Zhang, L.L., Gu, Z.H., Lu, H., Wan, S.H.: Edge-AI-driven framework with efficient mobile network design for facial expression recognition. ACM Trans Embed. Comput. Syst. 22(3), 1–17 (2023)

    Article  Google Scholar 

  53. Landola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., Keutzer, K.: squeezenet: alexnet-level accuracy with 50x fewer parameters and< 0.5 MB model size. In: The 5th International Conference on Learning Representations (2016)

  54. Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X. Y., Jin, P., Zhao, S., Keutzer, K.: SqueezeNext: hardware-aware neural network design. In: The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1719–1728 (2018)

  55. Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan, M., Chuet, G.: Searching for MobileNetV3. In: The 2019 IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

  56. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

  57. Ma, N. N., Zhang, X. Y., Zheng, H. T., Sun, J.: ShuffleNet V2: Practical guidelines for efficient architecture design. In: The 2018 European conference on computer vision (ECCV), pp. 116–131 (2018)

  58. Zhang, T., Qi, G. -J., Xiao, B., Wang, J.: Interleaved group convolutions. In: The 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4383–4392 (2017)

  59. Sun, K., Li, M. J., Liu, D., Wang, J. D.: IGCV3: Interleaved low-rank group convolutions for efficient deep neural networks. CoRR, (2018) http://arxiv.org/abs/1806.00178

Download references

Funding

This work has been supported in part by the Science and Technology Project of Xi’an City (Grant No. 22GXFW0086), the Science and Technology Project of Beilin District in Xi’an City (Grant No. GX2243), and the School-Enterprise Collaborative Innovation Fund for Graduate Students of Xi’an University of Technology (Grant No. 310/252062108).

Author information

Authors and Affiliations

Authors

Contributions

QS made the research formulation and revised the manuscript. YC contributed to the model architecture design, experiment design and implementation, and manuscript writing. DY, JW, and JY contributed to manuscript writing and revision. YL provided the hardware platform for real-time system verification.

Corresponding author

Correspondence to Qiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare they have no financial interests.

Informed consent

Informed consent was obtained from all the participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Chen, Y., Yang, D. et al. EC-RFERNet: an edge computing-oriented real-time facial expression recognition network. SIViP 18, 2019–2035 (2024). https://doi.org/10.1007/s11760-023-02832-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02832-4

Keywords

Navigation