Skip to main content
Log in

Maneuvering target detection method based on Keystone transform and Radon local mapping sparse-modified Lv’s Distribution

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper focuses on the range migration (RM) and Doppler frequency migration (DFM) problems, which are commonly faced in radar maneuvering target detection during the long-time integration. Considering the sparsity of target echo in the chirp rate (CR)-quadratic CR (QCR) domain, a novel coherent integration method is presented to realize the maneuvering target detection. The proposed method firstly conducts Keystone transform (KT) to remove the linear RM with respect to the target’s velocity and then performs Radon local mapping sparse-modified Lv’s distribution (RLMSMLVD) to eliminate the residual RM and DFM, thereby focusing the target in the sparse CR-QCR domain. Thanks to the adoption of two-dimensional (2-D) sparse Fourier transform (SFT), the proposed method can obtain a lower computational cost than the 2-D fast Fourier transform (FFT)-based implementation. Moreover, the local coordinates mapping is conducted in 2-D SFT to further increase the operation speed. Experimental results are given to demonstrate the high efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skolnik, M.I.: Introduction to Radar Systems, 3rd edn. McGraw-Hill, New York (2002)

    Google Scholar 

  2. Young-Kyun, B.-L.K.C., Young-Soo, K.: Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform. IEEE Trans. Geosci. Remote Sens. 43(4), 715–721 (2005)

    Article  Google Scholar 

  3. Carretero-Moya, J., Gismero-Menoyo, J., Asensio-Lopez, A., Blanco-Del-Campo, A.: Application of the Radon transform to detect small-targets in sea clutter. IET Radar Sonar Navig. 3(2), 155–166 (2009)

    Article  Google Scholar 

  4. Zhang, X., Liao, G., Zhu, S., Zeng, C., Shu, Y.: Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on Radon transform. IEEE Trans. Geosci. Remote Sens. 53(2), 1105–1117 (2015)

    Article  Google Scholar 

  5. Carlson, B.D., Evans, E.D., Wilson, S.L.: Search radar detection and track with the Hough transform I. System concept. IEEE Trans. Aerosp. Electron. Syst. 30(1), 102–108 (1994)

    Article  Google Scholar 

  6. Carlson, B.D., Evans, E.D., Wilson, S.: L: Search radar detection and track with the Hough transform II. Detection statistics. IEEE Trans. Aerosp. Electron. Syst. 30(1), 109–115 (1994)

    Article  Google Scholar 

  7. Carlson, B.D., Evans, E.D., Wilson, S.L.: Search radar detection and track with the Hough transform III. Detection performance with binary integration. IEEE Trans. Aerosp. Electron. Syst. 30(1), 116–125 (1994)

    Article  Google Scholar 

  8. Deng, X., Pi, Y., Morelande, M., Moran, B.: Track-before-detect procedures for low pulse repetition frequency surveillance radars. IET Radar Sonar Navig. 5(1), 65–73 (2011)

    Article  Google Scholar 

  9. Yi, W., Fang, Z., Li, W., Hoseinnezhad, R., Kong, L.: Multi-frame track-before-detect algorithm for maneuvering target tracking. IEEE Trans. Veh. Technol. 69(4), 4104–4118 (2020)

    Article  Google Scholar 

  10. Perry, R.P., Dipietro, R.C., Fante, R.: SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999)

    Article  Google Scholar 

  11. Zhou, F., Bai, X.: High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans. Geosci. Remote Sens. 56(8), 4568–4580 (2018)

    Article  Google Scholar 

  12. Xu, J., Yu, J., Peng, Y.N., Xia, X.G.: Radon-Fourier transform for radar target detection, (I): generalized Doppler filter bank. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1186–1202 (2011)

    Article  Google Scholar 

  13. Xu, J., Yu, J., Peng, Y.N., Xia, X.G.: Radon-Fourier transform for radar target detection (II): blind speed sidelobe suppression. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2473–2489 (2011)

    Article  Google Scholar 

  14. Yu, J., Xu, J., Peng, Y.N., Xia, X.G.: Radon-Fourier transform for radar target detection (III): optimality and fast implementations. IEEE Trans. Aerosp. Electron. Syst. 48(2), 991–1004 (2012)

    Article  Google Scholar 

  15. Niu, Z., Zheng, J., Su, T., Li, W., Zhang, L.: Radar high-speed target detection based on improved minimalized windowed RFT. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14, 870–886 (2021)

    Article  Google Scholar 

  16. Rao, X., Tao, H., Su, J., Guo, X., Zhang, J.: Axis rotation MTD algorithm for weak target detection. Digit. Signal Process. 26, 81–86 (2014)

    Article  Google Scholar 

  17. Zheng, J., Su, T., Zhu, W., He, X., Liu, Q.H.: Radar high-speed target detection based on the scaled inverse Fourier transform. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(3), 1108–1119 (2015)

    Article  Google Scholar 

  18. Li, X., Cui, G., Yi, W., Kong, L.: Sequence-reversing transform-based coherent integration for high-speed target detection. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1573–1580 (2017)

    Article  Google Scholar 

  19. Fu, M., Sun, H., Deng, Z., Li, Y., Zhang, Y.: A novel method for fast detection of high-speed targets. Signal Process. 182, 107938 (2021)

    Article  Google Scholar 

  20. Sun, Z., Li, X., Yi, W., Cui, G., Kong, L.: A coherent detection and velocity estimation algorithm for the highspeed target based on the modified location rotation transform. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 11(7), 2346–2361 (2018)

    Article  Google Scholar 

  21. Zhou, F., Wu, R., Xing, M., Bao, Z.: Approach for single channel SAR ground moving target imaging and motion parameter estimation. IET Radar Sonar Navig. 1(1), 59–66 (2007)

    Article  Google Scholar 

  22. Kong, L., Li, X., Cui, G., Yi, W., Yang, Y.: Coherent integration algorithm for a maneuvering target with high-order range migration. IEEE Trans. Signal Process. 63(17), 4474–4486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, M., Liao, G., Zhu, S., He, X., Li, Y.: A novel method for high-speed maneuvering target detection and motion parameters estimation. Multidimens. Syst. Signal Process. 31(4), 1625–1647 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, W., Su, W., Gu, H.: Fast method for radar maneuvering target detection and motion parameter estimation. Multidimens. Syst. Signal Process. 29(4), 1411–1425 (2018)

    Article  Google Scholar 

  25. Xu, J., Xia, X., Peng, S., Yu, J., Peng, Y., Qian, L.: Radar maneuvering target motion estimation based on generalized Radon-Fourier transform. IEEE Trans. Signal Process. 60(12), 6190–6201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, W., Wang, G., Sun, J.: Polynomial radon-polynomial fourier transform for near space hypersonic maneuvering target detection. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1306–1322 (2018)

    Article  Google Scholar 

  27. Yu, W., Su, W., Gu, H.: Ground moving target motion parameter estimation using Radon-modified Lv’s distribution. Digit. Signal Process. 69, 212–223 (2017)

    Article  Google Scholar 

  28. Yu, W., Su, W., Gu, H.: Ground maneuvering target detection based on discrete polynomial-phase transform and Lv’s distribution. Signal Process. 144, 364–372 (2018)

    Article  Google Scholar 

  29. Pang, C., Liu, S., Han, Y.: Coherent detection algorithm for radar maneuvering targets based on discrete polynomial-phase transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(9), 3412–3422 (2019)

    Article  Google Scholar 

  30. Tian, M., Liao, G., Zhu, S., He, X., Liu, Y., Li, Y.: An efficient method for ground maneuvering target refocusing and motion parameter estimation based on DPT-KT-MFP. Remote Sens. 13(6), 74 (2021)

    Article  Google Scholar 

  31. Huang, P., Liao, G., Yang, Z., Shu, Y., Du, W.: Approach for space-based radar manoeuvring target detection and high-order motion parameter estimation. IET Radar Sonar Navig. 9(6), 732–741 (2015)

    Article  Google Scholar 

  32. Li, X., Cui, G., Yi, W., Kong, L.: Fast coherent integration for maneuvering target with high-order range migration via TRT-SKT-LVD. IEEE Trans. Aerosp. Electron. Syst. 52(6), 2803–2814 (2016)

    Article  Google Scholar 

  33. Jin, K., Zhang, H., Huang, J., Qi, Y., Zhao, Y.: Efficient maneuvering target detection method based on time reversal transform and scaled nonuniform fast Fourier transform. J. Appl. Remote Sens. 13, 1 (2019)

    Article  Google Scholar 

  34. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings of 23rd Annual ACM-SIAM Symposium Discrete Algorithms, Kyoto, Japan, pp. 1183–1194 (2012)

  35. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier transform. In: Proceedings of 44th Annual ACM Symposium Theory Computing, New York, NY, USA, pp. 563–578 (2012)

  36. Zhang, H., Shan, T., Liu, S., Tao, R.: Performance evaluation and parameter optimization of sparse Fourier transform. Signal Process. 179, 107823 (2021)

    Article  Google Scholar 

  37. Wang, S., Patel, V.M., Petropulu, A.: The robust sparse Fourier transform (RSFT) and its application in radar signal processing. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2735–2755 (2017)

    Article  Google Scholar 

  38. Pang, C., Liu, S., Han, Y.: High-speed target detection algorithm based on sparse Fourier transform. IEEE Access 6, 37828–37836 (2018)

    Article  Google Scholar 

  39. Yu, X., Huang, Y., Zhang, L., Chen, X., Guan, J.: Radar moving target detection via improved sparse Fourier transform. In: Proceedings of IEEE 2nd International Conferences Electronics Information and Communications Technology (ICEICT), pp. 543–546 (2019)

  40. Yu, X., Chen, X., Huang, Y., Guan, J.: Sparse fractional Fourier transform and its applications in radar moving target detection. In: Proceedings of International Conferences Radar (RADAR) (2018)

  41. Yu, X., Chen, X., Huang, Y., Guan, J.: Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform. IEEE Geosci. Remote Sens. Lett. 17(6), 978–982 (2020)

    Article  Google Scholar 

  42. Liu, S., Shan, T., Tao, R., Zhang, Y.D., Zhang, G., Zhang, F., Wang, Y.: Sparse discrete fractional Fourier transform and its applications. IEEE Trans. Signal Process. 62(24), 6582–6595 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, Y., Wang, J., Huang, L. Yang, R.: Low complexity Keystone transform without interpolation for dim moving target detection. In: Proceedings of 2011 IEEE CIE International Conferences Radar, pp. 1745–1748 (2011)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62001229, Grant 62101260 and Grant 62101264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Su, W., Gu, H. et al. Maneuvering target detection method based on Keystone transform and Radon local mapping sparse-modified Lv’s Distribution. SIViP 17, 2771–2778 (2023). https://doi.org/10.1007/s11760-023-02494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02494-2

Keywords

Navigation