Skip to main content
Log in

Image defogging based on multi-input and multi-scale UNet

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The coarse-to-fine image defogging strategy has been widely used in the structural design of individual image defogging networks. In the traditional method, multi-scale input image subnets are superimposed, so that the sharpness of the image is gradually improved from the bottom subnet to the top subnet, which inevitably leads to the loss of image details. Toward a fast and accurate dehazing network design, we revisit the coarse-to-fine strategy and present a multi-input and multi-scale U-Net (MIMS-UNet). The MIMS-UNet has two distinct features. On the one hand, the single-encoder of MIMS-UNet adopts multi-input and multi-scale image, which increases the computation amount but greatly improves the network performance. On the other hand, codec structures with context blocks are used to capture context information and recover more details. The experimental results show that the proposed method achieves good results in both quantification and visualization. Compared with the existing methods, the proposed network can achieve ideal results of defogging and effectively avoid color distortion after defogging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5 
Fig. 6 
Fig. 7

Similar content being viewed by others

References

  1. Mccartney, E.J., Hall, F.F.: Optics of the atmosphere: scattering by molecules and particles. Phys. Today 30, 76–77 (1976). https://doi.org/10.1063/1.3037551

    Article  Google Scholar 

  2. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48, 233–254 (2002). https://doi.org/10.1023/A:1016328200723

    Article  MATH  Google Scholar 

  3. Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. Comput. Vis. Image Underst. 165, 1–16 (2017). https://doi.org/10.1016/j.cviu.2017.09.003

    Article  Google Scholar 

  4. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682 (2016). https://doi.org/10.1109/CVPR.2016.185

  5. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. In: IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191

  6. Xu, H., Zhai, G., Wu, X., Yang, X.: Generalized equalization model for image enhancement. In: IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 68–82 (2014). https://doi.org/10.1109/TMM.2013.2283453

  7. Jiang, B., Woodell, G.A., Jobson, D.J.: Novel multi-scale retinex with color restoration on graphics processing unit. J. Real-Time Image Proc. 10, 239–253 (2015). https://doi.org/10.1007/s11554-014-0399-9

    Article  Google Scholar 

  8. Xu, H.T., Zhai, G.T., Wu, X.L., et al.: Generalized equalization model for image enhancement. IEEE Trans. Multimed. 16(1), 68–82 (2014)

    Article  Google Scholar 

  9. Liu, H.B., Yang, J., Wu, Z.P., et al.: A fast single image dehazing method based on dark channel prior and Retinex theory. Acta Automatica Sinica 41(7), 1264–1273 (2015). https://doi.org/10.16383/j.aas.2015.c140748

    Article  Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011). https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  11. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008).https://doi.org/10.1109/CVPR.2008.4587643

  12. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34, 1–14 (2014). https://doi.org/10.1145/2651362

    Article  Google Scholar 

  13. Tarel, J., Hautière, N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2201–2208 (2009). https://doi.org/10.1109/ICCV.2009.5459251

  14. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: 2013 IEEE International Conference on Computer Vision, pp. 617–624 (2013).https://doi.org/10.1109/ICCV.2013.82

  15. Li, Y., Tan, R.T., Brown, M.S.: Nighttime Haze removal with glow and multiple light colors. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 226–234 (2015). https://doi.org/10.1109/ICCV.2015.34

  16. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98, 263–278 (2012). https://doi.org/10.1007/s11263-011-0508-1

    Article  MathSciNet  Google Scholar 

  17. Yang, D., Sun, J.: Proximal Dehaze-Net: a prior learning-based deep network for single image dehazing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision—ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol. 11211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_43

  18. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191

    Article  MATH  MathSciNet  Google Scholar 

  19. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016). https://doi.org/10.1109/TIP.2016.2598681

    Article  MATH  MathSciNet  Google Scholar 

  20. Ren, W. et al.: Gated fusion network for single image dehazing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018).https://doi.org/10.1109/CVPR.2018.00343

  21. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H. (2016). Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision—ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9906. Springer, Cham. https://doi.org/10.1007/978-3-319-46475-6_10

  22. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018). https://doi.org/10.1109/CVPR.2018.00337

  23. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced Pix2pix dehazing network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8152–8160 (2019). https://doi.org/10.1109/CVPR.2019.00835

  24. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 4780–4788 (2017). https://doi.org/10.1109/ICCV.2017.511

  25. Dong, H. et al.: Multi-Scale boosted dehazing network with dense feature fusion. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2154–2164 (2020). https://doi.org/10.1109/CVPR42600.2020.00223

  26. Cho, S.-J., Ji, S.-W., Hong, J.-P., Jung, S.-W., Ko, S.-J. (2021). Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4641–4650. https://doi.org/10.48550/arXiv.2108.05054

  27. Chang, M., Li, Q., Feng, H., Xu, Z.: Spatial-adaptive network for single image denoising. In: European Conference on Computer Vision (2020). https://doi.org/10.1007/978-3-030-58577-8_11

  28. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  29. Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., Ren, J.S.: DAVANet: stereo deblurring with view aggregation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10988–10997 (2019). https://doi.org/10.1109/CVPR.2019.01125

  30. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: RESIDE: a benchmark for single image dehazing. arXiv:1712.04143 (2017)

  31. Ancuti, C., Ancuti, C.O., Timofte, R., De Vleeschouwer, C. (2018). I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science, vol. 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_52

  32. Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2805–2814 (2020).https://doi.org/10.1109/CVPR42600.2020.00288

  33. Mei, K., Jiang, A., Li, J., Wang, M.: Progressive feature fusion network for realistic image dehazing. In: Asian Conference on Computer Vision, pp. 203–215 (2018). https://doi.org/10.1007/978-3-030-20887-5_13

  34. Liu, X., Ma, Y., Shi, Z., Chen, J.: GridDehazeNet: attention-based multi-scale network for image dehazing. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7313–7322 (2019). https://doi.org/10.1109/ICCV.2019.00741

  35. Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging the potential of paired operations for image restoration. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7000–7009 (2019). https://doi.org/10.1109/CVPR.2019.00717

  36. Dong, J., Pan, J.: Physics-based feature de-hazing networks. In: European Conference on Computer Vision, pp. 188–204. https://doi.org/10.1007/978-3-030-58577-8_12

  37. Zhang, H., Sindagi, V., Patel, V.M.: Multi-scale single image dehazing using perceptual pyramid deep network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1015–101509 (2018). https://doi.org/10.1109/CVPRW.2018.00135

  38. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8202–8211 (2018). https://doi.org/10.1109/CVPR.2018.00856

  39. Chen, D. et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375–1383 (2019). https://doi.org/10.1109/WACV.2019.00151.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhengchun Lin:Writing - Review & Editing,Supervision,Funding acquisition,Formal analysis,Funding acquisition. Qingxing Luo: Writing - Original Draft,Data Curation,Software,Methodology,Visualization. Yunzhi Jiang & Jing Wang :Supervision. Siyuan Li:software. Gongwen Cheng & Zheng Genrang :Funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qingxing Luo.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Luo, Q., Jiang, Y. et al. Image defogging based on multi-input and multi-scale UNet. SIViP 17, 1143–1151 (2023). https://doi.org/10.1007/s11760-022-02321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02321-0

Keywords

Navigation