Skip to main content
Log in

An improved polynomial rooting-based method for solving non-trivial ambiguity in direction-finding using an unfolded co-prime linear array

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The direction-finding (DF) problem for unfolded co-prime linear array (UCLA) is researched. Specifically, there is a need to address the critical issue of non-trivial ambiguity in estimating the angle-of-arrival (AOA) parameter. To address this issue, an improved polynomial rooting-based method is proposed. A polynomial function is derived based on the orthogonality between the noise subspace singular vectors and array response vectors. In order to select the signal roots that are related to true AOAs over ambiguous roots, a maximum signal power function is proposed based on spatial filtering and second-order differential. The proposed method overcomes the non-trivial ambiguity and estimates the true AOAs successfully with improved estimation performances in terms of reliability, accuracy and angular resolution involving low computational cost. Simulations have been performed to show the effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shu, F., Shen, T., Xu, L., Qin, Y., Wan, S., Jin, S., You, X., Wang, J.: Directional modulation: a physical-layer security solution to B5G and future wireless networks. IEEE Network 34(2), 210–216 (2020)

    Article  Google Scholar 

  2. Liao, B., Madanayake, A., Agathaklis, P.: Array signal processing and systems. Multidimens. Syst. Sign. Process. 29(2), 467–473 (2018)

    Article  MATH  Google Scholar 

  3. Grenier, D., Elahian, B., Blanchard-Lapierre, A.: Joint delay and direction of arrivals estimation in mobile communications. Signal Image Video Process. 10(1), 45–54 (2016)

    Article  Google Scholar 

  4. Tokgoz, S., Panahi, I.M.S.: Robust three-microphone speech source localization using randomized singular value decomposition. IEEE Access. 9, 157800–157811 (2021)

    Article  Google Scholar 

  5. Dehghan Firoozabadi, A., Irarrazaval, P., Adasme, P., et al.: A novel method for estimating the number of speakers based on generalized eigenvalue–vector decomposition and adaptive wavelet transform by using K-means clustering. Signal Image Video Process. 14, 1017–1025 (2020)

    Article  Google Scholar 

  6. Tuncer, T.E., Friedlander, B.: Classical and Modern Direction-of-Arrival Estimation. Academic Press, London (2009)

    Google Scholar 

  7. Moffet, A.T.: Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  8. Vertatschitsch, E., Haykin, S.: Nonredundant arrays. Proc. IEEE. 74(1), 217 (1986)

    Article  Google Scholar 

  9. Pal, P., Vaidyanathan, P.P.: Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Proc. 58(8), 4167–4181 (2010)

    Article  MATH  Google Scholar 

  10. Vaidyanathan, P.P., Pal, P.: Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Proc. 59(2), 573–586 (2011)

    Article  MATH  Google Scholar 

  11. Tan, Z., Eldar, Y., Nehorai, A.: Direction of arrival estimation using co-prime arrays: a super-resolution viewpoint. IEEE Trans. Signal Proc. 62(21), 5565–5576 (2014)

    Article  MATH  Google Scholar 

  12. Qin, S., Zhang, Y., Amin, M.: Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Proc. 63(6), 1377–1390 (2015)

    Article  MATH  Google Scholar 

  13. Liu, C.-L., Vaidyanathan, P.P.: Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  14. Xie, Q., Pan, X., Xiao, S.: Enhance degrees of freedom for coprime array using optspace algorithm. IEEE Access. 7, 32672–32680 (2019)

    Article  Google Scholar 

  15. Yang, X., Wang, Y., Chargé, P., Ding, Y.: An efficient DOA estimation method for co-prime linear arrays. IEEE Access. 7, 90874–90881 (2019)

    Article  Google Scholar 

  16. Zhou, C., Shi, Z., Gu, Y., Shen, X.: DECOM: DOA estimation with combined MUSIC for coprime array. In: IEEE international conference on wireless communication signal processing. pp. 1–5 (2013)

  17. Sun, F.G., Lan, P., Gao, B.: Partial spectral search-based DOA estimation method for co-prime linear arrays. Electron. Lett. 51(24), 2053–2055 (2015)

    Article  Google Scholar 

  18. Sun, F., Gao, B., Chen, L., Lan, P.: A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays. Sensors. 16(9), 1367 (2016)

    Article  Google Scholar 

  19. Zhang, D., Zhang, Y., Zheng, G., Feng, C., Tang, J.: Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm. Electron. Lett. 53(18), 1277–1279 (2017)

    Article  Google Scholar 

  20. Yan, F., Liu, S., Wang, J., Jin, M., Shen, Y.: Fast DOA estimation using co-prime array. Electron. Lett. 54(7), 409–410 (2018)

    Article  Google Scholar 

  21. Liu, A., Yang, Q., Zhang, X., Deng, W.: Modified root music for co-prime linear arrays. Electron. Lett. 54(15), 949–951 (2018)

    Article  Google Scholar 

  22. Zheng, W., Zhang, X., Gong, P., Zhai, H.: DOA estimation for coprime linear array: an ambiguity-free method involving full DOFs. IEEE Commun. Lett. 22(3), 562–565 (2018)

    Article  Google Scholar 

  23. He, W., Yang, X., Wang, Y.: A high-resolution and low-complexity DOA estimation method with unfolded coprime linear arrays. Sensors. 20(1), 218 (2020)

    Article  Google Scholar 

  24. Liu, J., Zhao, Z., He, Z., Nie, Z., Liu, Q.: Resolving manifold ambiguities for direction-of-arrival estimation of sparse array using semi-circular substrates. IET Microwaves Antennas Propag. 7(12), 1016–1020 (2013)

    Article  Google Scholar 

  25. Yang, X., Wang, Y., Chargé, P.: Modified DOA estimation with an unfolded co-prime linear array. IEEE Commun. Lett. 23(5), 859–862 (2019)

    Article  Google Scholar 

  26. Huang, X., Yang, X., Cao, L., Lu, W.: Pseudo noise subspace based DOA estimation for unfolded coprime linear arrays. IEEE Commun. Lett. 10(11), 2335–2339 (2021)

    Article  Google Scholar 

  27. Manikas, A.: Differential Geometry in Array Processing. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  28. Stoica, P., Nehorai, A.: Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1783–1795 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ashok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, C., Venkateswaran, N. An improved polynomial rooting-based method for solving non-trivial ambiguity in direction-finding using an unfolded co-prime linear array. SIViP 17, 219–226 (2023). https://doi.org/10.1007/s11760-022-02224-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02224-0

Keywords

Navigation