Skip to main content
Log in

Robustness of the coherently distributed MUSIC algorithm to the imperfect knowledge of the spatial distribution of the sources

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The MUltiple SIgnal Classification (MUSIC) estimator has been widely studied for a long time for its high resolution capabilities in the domain of the directional of arrival (DOA) estimation, with the sources assumed to be point. However, when the actual sources are spatially distributed with angular dispersion, the performance of the conventional MUSIC is degraded. This paper deals with the sensitivity of MUSIC to modeling error due to coherently distributed (CD) sources. A performance analysis of an extended MUSIC taking into account a generalized steering vector based on a CD source model (CD-MUSIC) is first studied. We establish closed-form expressions of the DOA estimation bias and mean square error due to both the model error and the effects of a finite number of snapshots. The aim of this paper is also to determine when the point source assumption is acceptable for standard MUSIC. The analytical results are validated by numerical simulations and discussed in different configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciuonzo, D., Romano, G., Solimene, R.: Performance analysis of time-reversal MUSIC. IEEE Trans. Signal Process. 63(10), 2650–2662 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ma, G., Sha, Z., Liu, Z., Huang, Z.: Ica-based direction-of-arrival estimation of uncorrelated and coherent signals with uniform linear array. Signal Image Video Process. 8(3), 543–548 (2014)

    Article  Google Scholar 

  3. Liu, C., Liu, F., Zhang, S.: A novel direction-of-arrival estimation method for wideband signals. Signal Image Video Process. 6(1), 141–145 (2012)

    Article  Google Scholar 

  4. Tao, J.W., Chang, W.X., Cui, W.: Direction-finding of coherent signals based on cylindrical vector-hydrophones array. Signal Image Video Process. 4(2), 221–232 (2010)

    Article  MATH  Google Scholar 

  5. El Markhi, H., Haibala, M.M.O., Mrabti, F., Chargé, P., Zouak, M.: An improved cyclic beamforming method for signal doa estimation. Signal Image Video Process. 1(3), 267–272 (2007)

    Article  MATH  Google Scholar 

  6. Chu, Ning, Mohammad Djafari, Ali, Picheral, José: Robust Bayesian super-resolution approach via sparsity enforcing a priori for near-field aeroacoustic source imaging. J. Sound Vib. 332(18), 4369–4389 (2013)

    Article  Google Scholar 

  7. Brooks, T.F., Humphreys, W.M.: A deconvolution approach for the mapping of acoustic source (DAMAS) determined from phased microphone arrays. J. Sound Vib. 294, 856–876 (2006)

    Article  Google Scholar 

  8. Birot, G., Albera, L., Wendling, F., Merlet, I.: Localisation of extended brain sources from EEG/ MEG: the Ex So- MUSIC approach. Neuroimage 56(1), 102–113 (2011). (Elsiever)

    Article  Google Scholar 

  9. Young, A.P., Guza, R.T., Adams, P.N., O’Reilly, W.C., Flick, R.E.: Cross-shore decay of cliff top ground motions driven by local ocean swell and infragravity waves. J. Geophys. Res. Oceans (1978–2012), 117(C6), 50–60 (2012)

  10. Pedersen, K.I., Mogensen, P.E., Fleury, B.H.: A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans. Veh. Technol. 49(2), 437–447 (2000)

    Article  Google Scholar 

  11. Besson, O., Stoica, P.: Decoupled estimation of DOA and angular spread of a spatially distributed source. IEEE Trans. Signal Process. 48(7), 1872–1882 (2000)

    Article  MATH  Google Scholar 

  12. Zoubir, A., Wang, Y., Chargé, P.: Efficient subspace-based estimator for localization of multiple incoherently distributed sources. IEEE Trans. Signal Process. 56(2), 532–542 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hu, A., Lv, T., Gao, H., Zang, Z., Yang, S.: An ESPRIT-based approach for 2-d localization of incoherently distibuted sources in massive MIMO systems. IEEE J. Sel. Top. Signal process. 8(5), 996–1011 (2014)

    Article  Google Scholar 

  14. Valaee, S., Champagne, B., Kabal, P.: Parametric localization of distributed sources. IEEE Trans. Signal Process. 43(9), 2144–2153 (1995)

    Article  Google Scholar 

  15. Raich, Raviv, Goldberg, Jason, Messer, Hagit: Bearing estimation for a distributed source: modeling, inherent accuracy limitations and algorithms. IEEE Trans. Signal Process. 48(2), 429–441 (2000)

    Article  Google Scholar 

  16. Xiong, W., Picheral, J., Marcos, S.: Performance analysis of MUSIC in the presence of modeling errors due to the spatial distributions of sources. In: Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp. 2804–2808. IEEE (2015)

  17. Trump, T., Ottersten, B.: Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Process. 50(12), 57–69 (1996)

    Article  MATH  Google Scholar 

  18. Lee, J., Song, I., Kwon, H., Lee, S.: Low-complexity estimation of 2 D DOA for coherently distributed sources. Signal Process. 83(8), 1789–1802 (2003)

    Article  MATH  Google Scholar 

  19. Raich, R., Goldberg, J., Messer, H.: Bearing estimation for a distributed source via the conventional beamformer. In: Statistical Signal and Array Processing, 1998. Proceedings., Ninth IEEE SP Workshop on, pp. 5–8. IEEE (1998)

  20. Astély, D., Ottersten, B.: The effects of local scattering on direction of arrival estimation with MUSIC. IEEE Trans. Signal Process. 47(12), 3220–3234 (1999)

    Article  Google Scholar 

  21. Swindlehurst, A., Kailath, T.: A performance analysis of subspace method in the presence of model errors : case of MUSIC. IEEE Trans. Signal Process. 40(7), 1758–1773 (1992)

    Article  MATH  Google Scholar 

  22. Kangas, A., Stoica, P., Soderstrom, T.: Finite sample and modeling error effects on ESPRIT and MUSIC diretion estimators. IEE Proc Radar Sonar Navig. 141(5), 249–255 (1994)

    Article  Google Scholar 

  23. Weiss, A.J., Friedlander, B.: Effects of modeling errors on the resolution threshold of the MUSIC algorithm. IEEE Trans. Signal Process. 42(6), 1519–1526 (1994)

    Article  Google Scholar 

  24. Tague, J.A., Caldwell, C.I.: Expectations of useful complex wishart forms. Multidimens. Syst. Signal Process. 5(3), 263–279 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenmeng Xiong.

Appendix A

Appendix A

Based on (9), we study the case that the number of snapshots N is big enough, so that \({\varDelta }\hat{\mathbf{R }}, B_2, C_2\) is small, we can make the approximation :

$$\begin{aligned}&\sqrt{B^2 - 4AC} \nonumber \\ {}&\quad \approx \sqrt{B_1^2 - 4AC_1}\left( 1 + \frac{1}{2}\frac{2B_1B_2 +B_2^2 - 4AC_2}{B_1^2 - 4AC_1}\right) . \end{aligned}$$
(23)

Introducing (23) in (9), and keeping only first-order terms in \({\varDelta }\hat{\mathbf{R }}\), the expression of DOA estimation error can be given by:

$$\begin{aligned} {\varDelta }\theta _i \approx \frac{-(B_1+ B_2) + \sqrt{B_1^2-4AC_1}\left( 1+\frac{1}{2}\frac{2B_1B_2 - 4AC_2}{B_1^2 - 4AC_1} \right) }{2A}.\nonumber \\ \end{aligned}$$
(24)

\({\varDelta }\hat{\mathbf{R }}\) is a Wishart distribution [24] matrix with the property \(E[{\varDelta }\hat{\mathbf{R }}] = 0\), so that \(E[B_2] = E[C_2] = 0\). It follows that the DOA estimation bias can be derived as (10). Similarly, the DOA estimation MSE can be given by:

$$\begin{aligned} E[{\varDelta }\theta _i^2]&= \frac{B_1^2 - 2AC_1 - B_1\sqrt{B_1^2 - 4AC_1}}{2A^2} \nonumber \\&\quad + \left( 1/2A^2 - \frac{B_1}{2A^2\sqrt{B_1^2 - 4AC_1}}\right) E[B_2^2]\nonumber \\&\quad +\frac{1}{A\sqrt{B_1^2 - 4AC_1}}E[B_2C_2]. \end{aligned}$$
(25)

Using the same method in [21], we obtain \( E[B_2^2] = \frac{\sigma ^2_b}{2N}\varphi \) and \(E[B_2C_2] = \frac{\sigma ^2_b}{2N}\chi \), where:

$$\begin{aligned} \varphi \triangleq&{\mathcal {R}}{\text {e}} \left\{ 4\dot{\mathbf{c }}_h(\theta _i)^H {\varPi }\dot{\mathbf{c }}_h(\theta _i) \dot{\mathbf{c }}_h(\theta _i)^H\mathbf{Q }\mathbf{R }\mathbf{Q }\dot{\mathbf{c }}_h(\theta _i) \right. \\&+ 4\ddot{\mathbf{c }}_h(\theta _i)^H {\varPi }\dot{\mathbf{c }}_h(\theta _i)\mathbf{c }_h(\theta _i)\mathbf{Q }\mathbf{R }\mathbf{Q }\mathbf{c }_h(\theta _i) \\&+ \left. \ddot{\mathbf{c }}_h(\theta _i)^H {\varPi }\ddot{\mathbf{c }}_h(\theta _i)\mathbf{c }_h(\theta _i)\mathbf{Q }\mathbf{R }\mathbf{Q }\mathbf{c }_h(\theta _i) \right\} , \\ \chi \triangleq&{\mathcal {R}}{\text {e}} \left\{ 2\dot{\mathbf{c }}_h(\theta _i)^H {\varPi }\dot{\mathbf{c }}_h(\theta _i)\dot{\mathbf{c }}_h(\theta _i)\mathbf{Q }\mathbf{R }\mathbf{Q }\mathbf{c }_h(\theta _i) \right. \\&\left. +\, \ddot{\mathbf{c }}_h(\theta _i)^H {\varPi }\dot{\mathbf{c }}_h(\theta _i)\mathbf{c }_h(\theta _i)\mathbf{Q }\mathbf{R }\mathbf{Q }\mathbf{c }_h(\theta _i) \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Picheral, J. & Marcos, S. Robustness of the coherently distributed MUSIC algorithm to the imperfect knowledge of the spatial distribution of the sources. SIViP 11, 721–728 (2017). https://doi.org/10.1007/s11760-016-1015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1015-1

Keywords

Navigation