Skip to main content
Log in

A quality-on-demand electrocardiogram signal compression using modified set partitioning in hierarchical tree

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Biomedical signals enfold much crucial clinical information. Cardiac imperfection includes information on the morphology of its electrical signals. These signals are classically recorded over a considerable period, so the size of data file becomes bulky and hence compression is essential. This paper focuses on the implementation of electrocardiogram signal compression using wavelet-based progressive coding such as set partitioning in hierarchical tree and its modified version to achieve improvement in the speed at low bit rate. We obtained compression ratio up to 22:1 for MIT-BIH arrhythmia database record number 117 with a percent mean square difference of 0.9 and 0.73 % using orthogonal and biorthogonal wavelets, respectively. The coders accomplish bit rate control and produce a bit stream that is progressive in quality. It facilitates the user to trim the bit stream at desired point and make required quality restoration for the reduced file size with user-defined compression ratio or bit rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cetin, A.E., Koymen, H., Aydin, M.C.: Multichannel ECG data compression by multirate signal processing and transform domain coding techniques. IEEE Trans. Biomed. Eng. 40(5), 495–499 (1993)

    Article  Google Scholar 

  2. Jalaleddine, S.M.S., Hutchens, C.G., Strattan, R.D., Coberly, W.A.: ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4), 329–343 (1990)

    Article  Google Scholar 

  3. Tompkins, W.J.: Biomedical Digital Signal Processing. Springer-Verlag, Berlin, Heidelberg (2000)

    Google Scholar 

  4. Sabarimalai, M., Dandapat, S.: Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review, Biomed. Signal Process. Control 14(1), 73–107 (2014)

    Google Scholar 

  5. Abo-Zahhad, M., Al-Ajlouni, A.F., Ahmed, S.M., Schilling, R.J.: A new algorithm for the compression of ECG signals based on mother wavelet parameterization and best-threshold levels selection. Digit. Signal Process. A Rev. J. 23(3), 1002–1011 (2013). doi:10.1007/s11760-016-0944-z

    Article  MathSciNet  Google Scholar 

  6. Abdolhossein, Fathi., Fatemeh, Faraji-kheirabadi: ECG compression method based on adaptive quantization of main wavelet packet subbands. Signal Image Video Process. 1–8 (2016)

  7. Rajankar, S., Talbar, S.: An optimized transform for ECG signal compression. ACEEE Int. J. on Signal and Image Process. 01(03), 1–4 (2010)

  8. Olmos, S., Laguna, P.: Multi-lead ECG data compression with orthogonal expansions: KLT and wavelet packets. In: Computers in cardiology, vol. 26 (Cat. No.99CH37004), pp. 539–542, (1999)

  9. Bendifallah, A., Benzid, R., Boulemden, M.: Improved ECG compression method using discrete cosine transform. Electron. Lett. 47(2), 87 (2011)

    Article  Google Scholar 

  10. Khorrami, H., Moavenian, M.: A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Syst. Appl. 37(8), 5751–5757 (2010)

    Article  Google Scholar 

  11. Cetin, A. E., Tewfik, A. H., YardimciTewfi, Y.: Coding of ecg signals by wavelet transform extrema, in time-frequency and time-scale analysis, 1994. In: Proceedings of the IEEE-SP international symposium, pp. 544–547, (1994)

  12. Blanco-Velasco, M., Cruz-Roldn, F., Bravo-Santos, A., Martnez-Muoz, D.: A low computational complexity algorithm for ECG signal compression. Med. Eng. Phys. 26(7), 553–568 (2004)

    Article  Google Scholar 

  13. Ahmed, S.M., Al-shrouf, A., Abo-zahhad, M.: ECG data compression using optimal non-orthogonal wavelet transform. Med. Eng. Phys. 22(1), 39–46 (2000)

    Article  Google Scholar 

  14. Hilton, M.L.: Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans. Biomed. Eng. 44(5), 394–402 (1997)

    Article  Google Scholar 

  15. Mallat, S.: A wavelet tour of signal processing, Climate Change 2013—The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, pp. 1–30, (2013)

  16. Wang, Z., Zhu, P., Chen, Y.: A 2-D ECG compression algorithm based on modified SPIHT. In Proc. 5th Int. workshop on wearable and implantable body sensor networks, BSN2008, in conjunction with the 5th Int. summer school and symp. on medical devices and biosensors, ISSS-MDBS 2008, pp. 305–309, (2008)

  17. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  18. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)

    Article  Google Scholar 

  19. Pooyan, M., Taheri, A., Moazami-goudarzi, M., Saboori, I., Introduction, A.: Wavelet compression of ECG signals using SPIHT algorithm. World Acad. Sci. Eng. Technol. 2(3), 212–215 (2005)

    Google Scholar 

  20. Tai, S.C., Sun, C.C., Yan, W.C.: A 2-D ECG compression method based on wavelet transform and modified SPIHT. IEEE Trans. Biomed. Eng. 52(6), 999–1008 (2005)

    Article  Google Scholar 

  21. Sahraeian, S. M. E., Fatemizadeh, E.: Wavelet-based 2-D ECG data compression method using SPIHT and VQ coding, EUROCON 2007—Int. Conf. Comput. as a Tool, pp. 133–137, (2007)

  22. Islam, K.R., Abedin, M.A., Akter, M., Deb, R.: High speed ECG image compression using modified SPIHT. Int. J. Comput. Electr. Eng. 3(3), 1–5 (2011)

    Article  Google Scholar 

  23. Lu, Z., Kim, D.Y., Pearlman, W.A.: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans. Biomed. Eng. 47(7), 849–856 (2000)

    Article  Google Scholar 

  24. Moody, G.B.B., Mark, R.G.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  25. Ktata, S., Mahjoubi, H.: A zerotree coding for compression of ECG signal using EZW and SPIHT. In: IECON 2012—38th annual conference on IEEE industrial electronics society, pp. 1458–1464, (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Rajankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajankar, S., Talbar, S. A quality-on-demand electrocardiogram signal compression using modified set partitioning in hierarchical tree. SIViP 10, 1559–1566 (2016). https://doi.org/10.1007/s11760-016-0971-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0971-9

Keywords

Navigation