Skip to main content
Log in

New Modified SPIHT Algorithm for Data Compression System

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new modified set partitioning in hierarchical trees (MSPIHT) algorithm, which is used to generate absolute data values, and to convert decimal numbers into binary as a bit-plane. Then a new encoding method is used to process electrocardiography (ECG) data compression systems. This new ECG compression system uses one-dimensional reversal round-off non-recursive discrete periodized wavelet transform (1D RRO-NRDPWT), a quantization scheme, the new MSPIHT encoding, MSPIHT decoding, an inverse quantization scheme, and an inverse one-dimensional RRO-NRDPWT to reconstruct ECG signals. Experiment results indicate that the proposed new MSPIHT algorithm can ensure that reconstructed and original signals are approximately the same, with low complexity coding. It can also reduce the ECG signal to very few bits, enable the development of smaller devices, reduce the required PC memory capacity, improve performance speed, obtain a high compression ratio and reduce the percentage root mean square difference values. Therefore, this new approach will enhance wireless transmission for improved medical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brechet, L., Lucas, M. F., Doncarli, C., & Farina, D. (2007). Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection. IEEE Transactions on Biomedical Engineering, 54(12), 2186–2192.

    Article  Google Scholar 

  2. Lee, S. J., Kim, J., Lee, M., et al. (2011). A real-time ECG data compression and transmission algorithm for an e-Health device. IEEE Transactions on Biomedical Engineering, 58, 2448–2455.

    Article  Google Scholar 

  3. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P., et al. (2011). Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Transactions Biomedical Engineering, 58(9), 2456–2466.

    Article  Google Scholar 

  4. Zhang, Z., Jung, T. P., Makeig, S., & Rao, B. D. (2013). Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2), 300–309.

    Article  Google Scholar 

  5. Ku, C. T., Wang, H. S., Hung, K. C., & Hung, Y. S. (2006). A novel ECG data compression method based on non-recursive discrete periodized wavelet transform. IEEE Transactions on Biomedical Engineering, 53(12), 2577–2583.

    Article  Google Scholar 

  6. Lee, H. W., Liu, B. D., Hung, K. C., Lei, S. F., Tsai, C. F., Wang, P. C., et al. (2009). Breast tumor classification of ultrasound images using a reversible round-off non-recursive 1-D discrete periodic wavelet transform. IEEE Transactions on Biomedical Engineering, 56(3), 880–884.

    Article  Google Scholar 

  7. Ku, C. T., Hung, K. C., Wu, T. C., & Wang, H. S. (2010). Wavelet-based ECG data compression system with linear quality control scheme. IEEE Transactions on Biomedical Engineering, 57(6), 1399–1409.

    Article  Google Scholar 

  8. Chin-Feng, T. S. A. I., Huan-Sheng, W. A. N. G., King- Chu, H. U. N. G., & Shih-Chang, H. S. I. A. (2008). Non-recursive discrete periodized wavelet transform using segment accumulation algorithm and reversible round-off approach. IEICE Transactions Informations and Systems., 11, 2666–2674.

    Google Scholar 

  9. Said, A., Pearlman, W. A., et al. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions Circuits System Video Technology, 6(3), 243–250.

    Article  Google Scholar 

  10. Lu, Z., Kim, D. Y., & Pearlman, W. A. (2000). Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Transactions on Biomedical Engineering, 47(7), 849–856.

    Article  Google Scholar 

  11. Ranjeet Kumar, A., Kumar, G., Akhil, A., & Singh, S. N. H. Jafri. (2014). Computational efficient method for ECG signal compression based on modified SPIHT technique. Internatonal Journal Biomedical Engineering and Technology, 15(2), 173–188.

    Article  Google Scholar 

  12. Ravichandran, C., & Malmurugan, N. (2016). En- hanced adaptive approach of video coding at very low bit rate using MSPIHT algorithm. Circuits and Systems, 7(8), 1233–1241. https://doi.org/10.4236/cs.2016.78107.

    Article  Google Scholar 

  13. Vishwanath, M. (1994). The recursive pyramid algorithm for the discrete wavelet transform. IEEE Transactions Signal Process, 42(3), 673–677.

    Article  Google Scholar 

  14. Fry, T. W., & Hauck, S. A. (2005). SPIHT image compression on FPGAs. IEEE Transactions Circuits System Video Technology, 15(9), 1138–1147.

    Article  Google Scholar 

  15. Sharifahmadian, E. (2006). Wavelet compression of multichannel ecg data by enhanced set partitioning in hierarchical trees algorithm. In: 28th Annual International Conference on Engineering in Medicine and Biology Society (Vol. 8, pp. 5238–5243).

  16. Jin, Y., & Lee, H. J. (2012). A block-based pass- parallel SPIHT algorithm. IEEE Transactions Circuits System Video Technology, 22(7), 1064–1075.

    Article  Google Scholar 

  17. Cheng, C. C., Tseng, P. C., & Chen, L. G. (2009). Multimode embedded compression codec engine for power-aware video coding system. IEEE Transactions Circuits System Video Technology, 19(2), 141–150.

    Article  Google Scholar 

  18. Song, Xiaoying, Huang, Qijun, Chang, Sheng, He, Jin, & Wang, Hao. (2017). Three-dimensional separate descendant-based SPIHT algorithm for fast compression of high-resolution medical image sequences. IET Image Processing, 11(1), 80–87. https://doi.org/10.1049/iet-ipr.2016.0564.

    Article  Google Scholar 

  19. Corsonello, P., Perri, S., Staino, G., Lanuzza, M., & Cocorullo, G. (2006). Low bit rate image compression core for onboard space applications. IEEE Transactions Circuits System Video Technology, 16(1), 114–128.

    Article  Google Scholar 

  20. Tsung-Ching, Wu, Hung, King-Chu, Liu, Je-Hung, & Liu, Tung-Kuan. (2013). Wavelet-based ECG data compression optimization with genetic algorithm. Journal of Biomedical Science and Engineering, 6, 746–753.

    Article  Google Scholar 

  21. Hung, King-Chu, Tsung-Ching, Wu, Lee, Hsieh-Wei, & Liu, Tung-Kuan. (2014). EP-based wavelet coefficient quantization for linear distortion ECG data compression. Medical Engineering & Physics, 36, 809–821.

    Article  Google Scholar 

  22. MIT-BIH arrhythmia database. https://doi.org/10.13026/C2F305.

  23. Kumar, R., Kumar, A., & Pandey, R. K. (2013). Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Computer and Electrical Engineering, 39(1), 130–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Choi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, RC., Hung, KC. New Modified SPIHT Algorithm for Data Compression System. J. Med. Biol. Eng. 39, 18–26 (2019). https://doi.org/10.1007/s40846-018-0384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0384-z

Keywords

Navigation