Skip to main content
Log in

Design of complex adaptive multiresolution directional filter bank and application to pansharpening

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a new 2-D transform design, namely complex adaptive multiresolution directional filter bank, to represent the spatial orientation features of an input image adaptively. The proposed design is completely shift invariant and represents the input image by one low-pass and multiscale N directional band-pass subbands. Here, N represents estimated number of dominant directions present in the input image. Our design consists of two main filter bank stages. A fix partitioned complex-valued directional filter bank (CDFB) is at the core of the design followed by a novel partition filter bank stage. Fine partitioning of the CDFB subbands is used to get the adaptive nature of the proposed transform. The partitioning decision is made based on the directional significance of range of CDFB subband angle selectivity in the input image. Partition filter bank stage which nonuniformly partitions the CDFB subbands provides total N dominant direction selective subbands. Local orientation map of the input image is used to determine the dominant directions and hence N. For better sparsity properties, we design the multiresolution stage with filters having high vanishing moments and better frequency selectivity. Applicability of the proposed adaptive design is shown for pansharpening of multispectral images. Our proposed pansharpening approach is evaluated on images captured using QuickBird and IKONOS-2 satellites. Results obtained using the proposed approach on these datasets show considerable improvements in qualitative as well as quantitative evaluations when compared to state-of-the-art pansharpening approaches including transform-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, M.: MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 72(5), 591–596 (2006)

    Article  Google Scholar 

  2. Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS\(+\) Pan data. IEEE Trans. Geosci. Remote Sens. 45(10), 3230–3239 (2007)

    Article  Google Scholar 

  3. Alparone, L., Baronti, S., Garzelli, A., Nencini, F.: A global quality measurement of pan-sharpened multispectral imagery. IEEE Geosci. Remote Sens. Lett. 1(4), 313–317 (2004)

    Article  Google Scholar 

  4. Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 79 (2011)

    Article  Google Scholar 

  5. Ansari, R., Cetin, A.E., Lee, S.H.: Sub-band coding of images using nonrectangular filter banks. In: 32nd Annual Technical Symposium, pp. 315–323. International Society for Optics and Photonics (1988)

  6. Ansari, R., Gaggioni, H.P., LeGall, D.J.: HDTV coding using a nonrectangular subband decomposition. In: Proceedings of SPIE Visual Communications and Image Processing’88, vol. 1001, pp. 821–825 (1988)

  7. Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)

    Article  Google Scholar 

  8. Bhatnagar, G., Wu, Q., Liu, Z.: Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans. Multimedia 15(5), 1014–1024 (2013)

    Article  Google Scholar 

  9. Cetin, A.E.: A multiresolution nonrectangular wavelet representation for two-dimensional signals. Signal process. 32(3), 343–355 (1993)

    Article  MATH  Google Scholar 

  10. Choi, J., Yu, K., Kim, Y.: A new adaptive component-substitution based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 49(1), 295–309 (2011)

    Article  Google Scholar 

  11. Da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  12. Do, M.N., Lu, Y.M.: Multidimensional filter banks and multiscale geometric representations. Found. Trends Signal Process. 5(3), 157–264 (2012)

    Article  MATH  Google Scholar 

  13. Feng, X., Milanfar, P.: Multiscale principal components analysis for image local orientation estimation. In: 36th Asilomar Conference on Signals, Systems and Computers (2002)

  14. Garzelli, A., Nencini, F., Capobianco, L.: Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 46(1), 228–236 (2008)

    Article  Google Scholar 

  15. Gerek, Ö.N., Cetin, A.E.: Adaptive polyphase subband decomposition structures for image compression. IEEE Trans. Image Process. 9(10), 1649–1660 (2000)

    Article  Google Scholar 

  16. Jacques, L., Duval, L., Chaux, C., Peyré, G.: A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity. Signal Process. 91(12), 2699–2730 (2011)

    Article  Google Scholar 

  17. Liang, L., Shi, G., Xie, X.: Nonuniform directional filter banks with arbitrary frequency partitioning. IEEE Trans. Image Process. 20(1), 283–288 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, T.T., Oraintara, S.: The shiftable complex directional pyramid-part I: theoretical aspects. IEEE Trans. Signal Process. 56(10), 4651–4660 (2008)

    Article  MathSciNet  Google Scholar 

  19. Otazu, X., Gonzalez-Audicana, M., Fors, O., Nunez, J.: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 43(10), 2376–2385 (2005)

    Article  Google Scholar 

  20. Peyré, G.: A review of adaptive image representations. IEEE J. Sel. Top. Signal Process. 5(5), 896–911 (2011)

    Article  MATH  Google Scholar 

  21. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  22. Ranchin, T., Aiazzi, B., Alparone, L., Baronti, S., Wald, L.: Image fusion—the ARSIS concept and some successful implementation schemes. ISPRS J. Photogramm. Remote Sens. 58(1–2), 4–18 (2003)

    Article  Google Scholar 

  23. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  24. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tay, D.B.H., Kingsbury, N.G.: Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables. IEEE Trans. Image Proces. 2(4), 466–480 (1993)

    Article  Google Scholar 

  26. Unser, M.: Approximation power of biorthogonal wavelet expansions. IEEE Trans. Signal Process. 44(3), 519–527 (1996)

    Article  MathSciNet  Google Scholar 

  27. Upla, K.P., Joshi, M.V., Gajjar, P.P.: An edge preserving multiresolution fusion: use of contourlet transform and MRF prior. IEEE Trans. Geosci. Remote Sens. 53(6), 3210–3220 (2015)

    Article  Google Scholar 

  28. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Pearson Education, Upper Saddle River (1993)

    MATH  Google Scholar 

  29. Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G., Restaino, R., Wald, L.: A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 53(5), 2565–2586 (2015)

    Article  Google Scholar 

  30. Wald, L.: Quality of high resolution synthesized images: Is there a simple criterion? In: Proceedings of International Conference on Fusion Earth Data, pp. 46–61 (2000)

  31. Wang, X., Shi, G., Niu, Y., Zhang, L.: Robust adaptive directional lifting wavelet transform for image denoising. IET Image Process. 5(3), 249–260 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Trans. Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  33. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor and the anonymous reviewers for their insightful comments. They would also like to thank Prof. Jocelyn Chanussot for providing the Pansharpening Toolbox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrishail S. Gajbhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajbhar, S.S., Joshi, M.V. Design of complex adaptive multiresolution directional filter bank and application to pansharpening. SIViP 11, 259–266 (2017). https://doi.org/10.1007/s11760-016-0931-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0931-4

Keywords

Navigation