Advertisement

Sexualstraftäter ohne und mit Migrationshintergrund aus dem Nahen Osten und Nordafrika

Tatverhalten und Rückfallprognose
  • Stefanie Schmidt
  • Olivia Pettke
  • Robert J. B. Lehmann
  • Klaus-Peter Dahle
Originalarbeit

Zusammenfassung

Derzeit gibt es nur wenig Forschung zu Sexualdelinquenten, die eine Zuwanderungsgeschichte haben und nicht aus dem euroamerikanischen Raum stammen. Es ist daher weitestgehend unklar, ob und, wenn ja, worin sich Täter mit und ohne Migrationshintergrund (MH) hinsichtlich des Delikts, demografischer Charakteristika, spezifischer Tatverhaltensmerkmale sowie Tatthemen unterscheiden und wie valide standardisierte Instrumente zur Vorhersage einschlägiger Rückfälle für Täter mit MH sind. Die vorliegende Studie untersuchte diese Aspekte an einer Stichprobe von 950 Sexualdelinquenten in Deutschland kulturvergleichend. Es zeigte sich, dass Sexualstraftäter mit MH aus dem Nahen Osten und Nordafrika jünger waren, weniger einschlägige Vordelinquenz hatten und seltener für sexuelle Missbrauchsdelikte verurteilt wurden als Täter ohne MH. Mit Blick auf Tatverhaltensmerkmale schien Sexualdelinquenz bei Tätern mit MH aus dem Nahen Osten und Nordafrika weniger durch sexuell deviante Interessen als vielmehr durch Gelegenheiten, Gruppendynamik und allgemeine dissoziale Handlungsbereitschaften geprägt zu sein als bei Tätern ohne MH. Dies konnte auch bei der gesonderten Betrachtung homogener Deliktgruppen und hinsichtlich der Ausprägung zusammenfassender Tatthemen gefunden werden. Die Vorhersage einschlägiger Rückfälligkeit mithilfe des weit verbreiteten Instruments Static-99R war bei Tätern aus dem Nahen Osten und Nordafrika indessen nicht möglich. Dementgegen erwies sich die standardisierte Erfassung des Tatverhaltens mittels Tatbild-Risiko-Score (TBRS) als valides Verfahren in allen Tätergruppen. Es scheint somit empfehlenswert, gerade bei Tätern mit MH Merkmale des Tatverhaltens bei der Kriminalprognose zu berücksichtigen.

Schlüsselwörter

Sexualstraftäter Migrationshintergrund Kriminalprognose Tatverhalten Tatthemen 

Sexual offenders with and without a migration background from the Middle East and North Africa

Crime scene behavior and risk assessment

Abstract

Until now, there has hardly been any research done among sexual offenders who have a migration background (MB) or who do not descend from a European-American background. Thus, little is known about potential differences between offenders with a MB and offenders without a MB in terms of offence type, demographic factors, special characteristics of crime scene behavior, and behavioral themes. Furthermore, it remains unclear whether the actuarial risk assessment tools are valid for offenders with a MB. To address these issues, 950 sexual offenders in Germany were examined via a cross-cultural approach. We found sexual offenders from the Near East and North Africa to be younger, with less previous sexual offences, and being less often convicted for child molestation compared to offenders without a MB. With respect to characteristics of crime scene behavior, sexual offences among offenders from the Near East and North Africa were less driven by deviant sexual interests, and instead were more related to opportunity, group dynamics, and an antisocial action readiness when compared to offenders without a MB. This difference was also found when more homogeneous groups concerning the offence type were analyzed and the comparison of various behavioral themes showed similar results. The prediction of future sex offences among offenders with a MB from the Near East and North Africa was not possible with the widely used Static-99R; however, the crime scene behavior risk (CBR) score proved to be a valid instrument for all subgroups of offenders. Consequently, we strongly recommend to use crime scene behavior assessment procedures, especially for offenders with a MB.

Keywords

Sexual offenders Migration background Risk assessment Crime scene behavior Behavioral themes 

Notes

Interessenkonflikt

S. Schmidt und O. Pettke, geben an, dass kein Interessenkonflikt besteht. R.J.B. Lehmann und K.-P. Dahle sind Autoren der hier angewendeten Skalen der Tatthemen und des TBRS.

Literatur

  1. Aebi MF, Tiago MM, Burkhardt C (2015) SPACE I – Council of Europe Annual Penal Statistics: prison populations. Survey 2014. Council of Europe, StraßburgGoogle Scholar
  2. Babchishin KM, Helmus L‑M (2016) The influence of base rates on correlations: an evaluation of proposed alternative effect sizes with real-world data. Behav Res Methods 48:1021–1031. doi: 10.3758/s13428-015-0627-7 CrossRefPubMedGoogle Scholar
  3. Bartosh DL, Garby T, Lewis D, Gray S (2003) Differences in the predictive validity of actuarial risk assessments in relation to sex offender type. Int J Offender Ther Comp Criminol 47:422–438. doi: 10.1177/0306624x03253850 CrossRefPubMedGoogle Scholar
  4. Bijleveld CCJH, Weerman FM, Looije D, Hendriks J (2007) Group sex offending by juveniles: coercive sex as a group activity. Eur J Criminol 4:5–31. doi: 10.1177/1477370807071728 CrossRefGoogle Scholar
  5. Boccaccini MT, Murrie DC, Caperton JD, Hawes SW (2009) Field validity of the STATIC-99 and MnSOST-R among sex offenders evaluated for civil commitment as sexually violent predators. Psychol Public Policy Law 15:278–314. doi: 10.1037/a0017232 CrossRefGoogle Scholar
  6. Boetticher A, Kröber H‑L, Müller-Isberner R et al (2007) Mindestanforderungen für Prognosegutachten. Forens Psychiatr Psychol Kriminol 1:90–100CrossRefGoogle Scholar
  7. Bortz J (2005) Statistik für Human- und Sozialwissenschaftler. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Bühner M, Ziegler M (2009) Statistik für Psychologen und Sozialwissenschaftler. Pearson, MünchenGoogle Scholar
  9. Bundeskriminalamt (2016) Polizeiliche Kriminalstatistik Bundesrepublik Deutschland; Jahrbuch 2015. https://www.bka.de/DE/AktuelleInformationen/StatistikenLagebilder/PolizeilicheKriminalstatistik/PKS2015/pks2015_node.html. Zugegriffen: 15. Juli 2017Google Scholar
  10. Canter DV (2000) Offender profiling and criminal differentiation. Leg Criminol Psychol 5:23–46. doi: 10.1348/135532500167958 CrossRefGoogle Scholar
  11. Canter DV (2004) Offender profiling and investigative psychology. J Investig Psychol Offender Profil 1:1–15. doi: 10.1002/jip.7 CrossRefGoogle Scholar
  12. Canter DV, Bennell C, Alison LJ, Reddy S (2003) Differentiating sex offences: a behaviorally based thematic classification of stranger rapes. Behav Sci Law 21:157–174. doi: 10.1002/bsl.526 CrossRefPubMedGoogle Scholar
  13. Cantürk N, Koç S (2010) Adli Tıp Kurumunda Değerlendirilen Cinsel Suç Sanıklarının Sosyo-Demografik Özellikleri ve Psikiyatrik Profilleri (The psychiatric profile and socio-demographic features of sexual offender). Ank Üniv Tıp Fak Mecm 63:49–54Google Scholar
  14. Craig LA, Browne KD, Stringer I, Beech A (2005) Sexual recidivism: a review of static, dynamic and actuarial predictors. J Sex Aggress 11:65–84. doi: 10.1080/13552600410001667733 CrossRefGoogle Scholar
  15. Dahle K‑P, Biedermann J, Gallasch-Nemitz F, Janka C (2010) Zur rückfallprognostischen Bedeutung des Tatverhaltens bei Sexualdelinquenz. Forens Psychiatr Psychol Kriminol 4:126–135. doi: 10.1007/s11757-010-0041-z CrossRefGoogle Scholar
  16. Dahle K‑P, Schmidt S (2014) Prognostische Validität des Level of Service Inventory-Revised. Forens Psychiatr Psychol Kriminol 8:104–115. doi: 10.1007/s11757-014-0256-5 CrossRefGoogle Scholar
  17. Dahle K‑P, Lehmann RJB, Richter A (2014a) Die Screening Skala Pädophilen Tatverhaltens. Forens Psychiatr Psychol Kriminol 8:208–215. doi: 10.1007/s11757-014-0261-8 CrossRefGoogle Scholar
  18. Dahle K‑P, Biedermann J, Lehmann RJB, Gallasch-Nemitz F (2014b) The development of the crime scene behavior risk measure for sexual offense recidivism. Law Hum Behav 38:569–579. doi: 10.1037/lhb0000088 CrossRefPubMedGoogle Scholar
  19. Edens JF, Cahill MA (2007) Psychopathy in adolescence and criminal recidivism in young adulthood: longitudinal results from a multiethnic sample of youthful offenders. Assessment 14:57–64. doi: 10.1177/1073191106290711 CrossRefPubMedGoogle Scholar
  20. Eher R, Rettenberger M, Gaunersdorfer K, Haubner-MacLean T, Matthes A, Schilling F, Mokros A (2013) Über die Treffsicherheit der standardisierten Risikoeinschätzungsverfahren Static-99 und Stable-2007 bei aus einer Sicherungsmaßnahme entlassenen Sexualstraftätern. Forens Psychiatr Psychol Kriminol 7:264–272. doi: 10.1007/s11757-013-0212-9 CrossRefGoogle Scholar
  21. Gerhold CK, Browne KD, Beckett R (2007) Predicting recidivism in adolescent sexual offenders. Aggress Violent Behav 12:427–438. doi: 10.1016/j.avb.2006.10.004 CrossRefGoogle Scholar
  22. Goodwill AM, Alison LJ, Beech AR (2009) What works in offender profiling? A comparison of typological, thematic, and multivariate models. Behav Sci Law 27:507–529. doi: 10.1002/bsl.867 CrossRefPubMedGoogle Scholar
  23. Haj-Yahia MM (2005) Can people’s patriarchal ideology predict their beliefs about wife abuse? The case of Jordanian men. J Community Psychol 33(5):545–567. doi: 10.1002/jcop.20068 CrossRefGoogle Scholar
  24. Häkkänen H, Lindlöf P, Santtila P (2004) Crime scene actions and offender characteristics in a sample of Finnish stranger rapes. J Investig Psychol Offender Profil 1:17–32. doi: 10.1002/jip.1 CrossRefGoogle Scholar
  25. Hanson RK, Morton-Bourgon KE (2005) The characteristics of persistent sexual offenders: a meta-analysis of recidivism studies. J Consult Clin Psychol 73:1154–1163. doi: 10.1037/0022-006x.73.6.1154 CrossRefPubMedGoogle Scholar
  26. Hanson RK, Thornton D (2000) Improving risk assessments for sex offenders: a comparison of three actuarial scales. Law Hum Behav 24:119–136. doi: 10.1023/a:1005482921333 CrossRefPubMedGoogle Scholar
  27. Hanson RK, Lunetta A, Phenix A, Neeley J, Epperson D (2014) The field validity of Static-99/R sex offender risk assessment tool in California. J Threat Assess Manag 1:102–117. doi: 10.1037/tam0000014 CrossRefGoogle Scholar
  28. Harris GT, Rice ME, Quinsey VL, Lalumière ML, Boer D, Lang C (2003) A multisite comparison of actuarial risk instruments for sex offenders. Psychol Assess 15:413–425. doi: 10.1037/1040-3590.15.3.413 CrossRefPubMedGoogle Scholar
  29. Hart SD (2016) Culture and violence risk assessment: the case of Ewert v. Canada. J Threat Assess Manag 3:76–96. doi: 10.1037/tam0000068 CrossRefGoogle Scholar
  30. Hart-Kerkhoffs LA, Vermeiren RJM, Jansen LMC, Doreleijers TAH (2011) Juvenile group sex offenders: a comparison of group leaders and followers. J Interpers Violence 26:3–20. doi: 10.1177/0886260510362882 CrossRefPubMedGoogle Scholar
  31. Heath AF, Rothon C, Kilpi E (2008) The second generation in Western Europe: education, unemployment, and occupational attainment. Annu Rev Sociol 34:211–235. doi: 10.1146/annurev.soc.34.040507.134728 CrossRefGoogle Scholar
  32. Helmus L, Hanson RK, Thornton D, Babchishin KM, Harris AJR (2012) Absolute recidivism rates predicted by Static-99R and Static-2002R sex offender risk assessment tools vary across samples. Crim Justice Behav 39:1148–1171. doi: 10.1177/0093854812443648 CrossRefGoogle Scholar
  33. Hilterman ELB, Nicholls TL, van Nieuwenhuizen C (2014) Predictive validity of risk assessments in juvenile offenders: Comparing the SAVRY, PCL:YV, and YLS/CMI with unstructured clinical assessments. Assessment 21:324–339. doi: 10.1177/1073191113498113 CrossRefPubMedGoogle Scholar
  34. Hofstede GH (2001) Culture’s consequences: comparing values, behaviors, institutions, and organizations across nations. SAGE, Thousand OaksGoogle Scholar
  35. Ilkkaracan P (1998) Exploring the context of women’s sexuality in Eastern Turkey. Reprod Health Matters 6:66–75. doi: 10.1016/s0968-8080(98)90009-x CrossRefGoogle Scholar
  36. Ingelhart R, Baker WE (2000) Modernization, cultural change, and the persistence of traditional values. Am Sociol Rev 65:19–51CrossRefGoogle Scholar
  37. Kagitcibasi C (2005) Autonomy and relatedness in cultural context: implications for self and family. J Cross Cult Psychol 36:403–422. doi: 10.1177/0022022105275959 CrossRefGoogle Scholar
  38. KG-Berlin, 5 Ws 672/98. Neue Zeitschrift für Strafrecht 19(6):319–320Google Scholar
  39. Langström N (2004) Accuracy of actuarial procedures for assessment of sexual offender recidivism risk may vary across ethnicity. Sex Abuse 16:107–120CrossRefPubMedGoogle Scholar
  40. Lee SC, Hanson RK (2017) Similar predictive accuracy of the static-99R risk tool for white, black, and hispanic sex offenders in california. Crim Justice Behav 10:009385481771147. doi: 10.1177/0093854817711477 Google Scholar
  41. Leguízamo A, Lee SC, Jeglic EL, Calkins C (2015) Utility of the Static-99 and Static-99R with latino sex offenders. Sex Abuse. doi: 10.1177/1079063215618377 PubMedGoogle Scholar
  42. Lehmann RJB, Goodwill AM, Gallasch-Nemitz F, Biedermann J, Dahle K‑P (2013) Applying crime scene analysis to the prediction of sexual recidivism in stranger rapes. Law Hum Behav 37:241–254. doi: 10.1037/lhb0000015 CrossRefPubMedGoogle Scholar
  43. Lehmann RJB, Goodwill AM, Hanson RK, Dahle K‑P (2014) Crime scene behaviors indicate risk-relevant propensities of child molesters. Crim Justice Behav 41:1008–1028. doi: 10.1177/0093854814521807 CrossRefGoogle Scholar
  44. Lehmann RJB, Goodwill AM, Hanson RK, Dahle K‑P (2016) Acquaintance rape: applying crime scene analysis to the prediction of sexual recidivism. Sex Abuse 28:679–702. doi: 10.1177/1079063215569542 CrossRefPubMedGoogle Scholar
  45. Marshall WL, Marshall LE (2000) The origins of sexual offending. Trauma Violence Abuse 1:250–263. doi: 10.1177/1524838000001003003 CrossRefGoogle Scholar
  46. McCann K, Lussier P (2008) Antisociality, sexual deviance, and sexual reoffending in juvenile sex offenders. Youth Violence Juv Justice 6:363–385. doi: 10.1177/1541204008320260 CrossRefGoogle Scholar
  47. Mokros A, Schilling F, Weiss K, Nitschke J, Eher R (2014) Sadism in sexual offenders: evidence for dimensionality. Psychol Assess 26:138–147. doi: 10.1037/a0034861 CrossRefPubMedGoogle Scholar
  48. Orgocka A (2004) Perceptions of communication and education about sexuality among Muslim immigrant girls in the US. Sex Educ 4:255–271. doi: 10.1080/1468181042000243349 CrossRefGoogle Scholar
  49. Polizeipräsident Berlin (2016) Polizeiliche Kriminalstatistik Berlin 2015. https://www.berlin.de/polizei/verschiedenes/polizeiliche-kriminalstatistik/. Zugegriffen: 21. Apr. 2017Google Scholar
  50. Ressler RK, Burguess AW, Douglas JE, Hartman CR, D’Agnostino RB (2016) Sexual killers and their victims. J Interpers Violence 1:288–308. doi: 10.1177/088626086001003003 CrossRefGoogle Scholar
  51. Santtila P, Ritvanen A, Mokros A (2004) Predicting burglar characteristics from crime scene behaviour. Int J Police Sci Manag 6:136–154. doi: 10.1350/ijps.6.3.136.39127 CrossRefGoogle Scholar
  52. Schmidt S, van der Meer E, Bliesener T (im Review) Risk Assessment is Effected by Culture and Migration: How the manifestation and predictive validity of the Central Eight vary between offenders with a Turkish and Arab migration background and German offenders without.Google Scholar
  53. Schuster I, Krahé B (2017) The prevalence of sexual aggression in Turkey: a systematic review. Aggress Violent Behav. doi: 10.1016/j.avb.2017.05.003 Google Scholar
  54. Schwartz SH (2006) A theory of cultural value orientation: explication and applications. Comp Sociol 5:137–182CrossRefGoogle Scholar
  55. Senatsverwaltung für Justiz und Verbraucherschutz (2015) Der Berliner Justizvollzug. https://www.berlin.de/justizvollzug/service/publikationen/. Zugegriffen: 13. Juli 2017Google Scholar
  56. Shepherd SM, Lewis-Fernandez R (2016) Forensic risk assessment and cultural diversity: contemporary challenges and future directions. Psychol Public Policy Law 22:427–438. doi: 10.1037/law0000102 CrossRefGoogle Scholar
  57. Seto MC (2008) Pedophilia and sexual offending against children: theory, assessment, and intervention. American Psychological Association, Washington DCCrossRefGoogle Scholar
  58. Singh JP, Grann M, Fazel S (2011) A comparative study of violence risk assessment tools: a systematic review and metaregression analysis of 68 studies involving 25,980 participants. Clin Psychol Rev 31:499–513. doi: 10.1016/j.cpr.2010.11.009 CrossRefPubMedGoogle Scholar
  59. Smallbone S, Rallings M (2013) Short-term predictive validity of the static-99 and static-99-R for indigenous and nonindigenous Australian sexual offenders. Sex Abuse 25:302–316. doi: 10.1177/1079063212472937 CrossRefPubMedGoogle Scholar
  60. Spehr A, Driemeyer W, Yoon D, Martin R, Briken P (2011) Hamburger Modellprojekt für sexuell auffällige Minderjährige: Wie unterscheiden sich Jungen mit von Jungen ohne Migrationshintergrund? Recht Psychiatr 29:123–131Google Scholar
  61. Statistisches Bundesamt (2016) Bevölkerung und Erwerbstätigkeit: Ausländische Bevölkerung, Ergebnisse des Ausländerzentralregisters. https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/AlteAusgaben/AuslaendBevoelkerungAlt.html;jsessionid=493BD729687AD282DF64EE9454E865F5.cae2. Zugegriffen: 27. Juli 2017Google Scholar
  62. Statistisches Bundesamt (2017) Bevölkerung mit Migrationshintergrund: Ergebnisse des Mikrozensus. https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/MigrationIntegration/Migrationshintergrund.html. Zugegriffen: 10. Apr. 2017Google Scholar
  63. Syed J, Frederick Littrell R, Bertsch A (2013) Traditional and contemporary status of women in the patriarchal belt. Equal Div Incl 32:310–324. doi: 10.1108/edi-12-2012-0122 CrossRefGoogle Scholar
  64. Tülü IA, Erden HG (2013) Türkiye’de Cinsel Suçlular ile İlgili Suç Analizi: Cinsel Saldırı Suçlularının Psikolojik Profi lleri, Bilişsel Çarpıtmaları ve Psikopati Düzeyleri (Crime analysis regarding sex offenders in Turkey: rapists’ psychological profiling, cognitive distortions and psychopathy). Türk Psikiyatr Derg. doi: 10.5080/u7070 Google Scholar
  65. UN Human Rights Office of the High Commissioner (2017) Middle East and Northern Africa region index. http://www.ohchr.org/EN/Countries/MENARegion/Pages/MenaRegionIndex.aspx. Zugegriffen: 17. Juli 2017Google Scholar
  66. van de Vijver FJR (2003) Bias and equivalence: cross-cultural perspectives. In: Harkness JA, van de Vijver FJR, Mohler PP (Hrsg) Cross-cultural survey methods. John Wiley, Hoboken, S 143–156Google Scholar
  67. van der Put C, Stams G‑J, Dekovic M, Hoeve M, van der Laan P (2013) Ethnic differences in offense patterns and the prevalence and impact of risk factors for recidivism. Int Crim Justice Rev 23:113–131. doi: 10.1177/1057567713482940 CrossRefGoogle Scholar
  68. Varela JG, Boccaccini MT, Murrie DC, Caperton JD, Gonzalez E (2013) Do the Static-99 and Static-99R perform similarly for white, black, and latino sexual offenders? Int J Forensic Ment Health 12:231–243. doi: 10.1080/14999013.2013.846950 CrossRefGoogle Scholar
  69. Veen VC, Stevens G, Doreleijers T, Vollebergh W (2011) Moroccan adolescent suspect offenders in the Netherlands: ethnic differences in offender profiles. Psychol Crime Law 17:545–561. doi: 10.1080/10683160903418205 CrossRefGoogle Scholar
  70. Viljoen JL, Elkovitch N, Scalora MJ, Ullman D (2009) Assessment of reoffense risk in adolescents who have committed sexual offenses. Crim Justice Behav 36:981–1000. doi: 10.1177/0093854809340991 CrossRefGoogle Scholar
  71. Viljoen JL, Mordell S, Beneteau JL (2012) Prediction of adolescent sexual reoffending: a meta-analysis of the J‑SOAP-II, ERASOR, J‑SORRAT-II, and Static-99. Law Hum Behav 36:423–438. doi: 10.1037/h0093938 CrossRefPubMedGoogle Scholar
  72. Ward T, Beech A (2006) An integrated theory of sexual offending. Aggress Violent Behav 11:44–63. doi: 10.1016/j.avb.2005.05.002 CrossRefGoogle Scholar
  73. Wentura D, Pospeschill M (Hrsg) (2015) Multivariate Datenanalyse. Springer, WiesbadenGoogle Scholar
  74. Wortley R, Smallbone S (2006) Applying situational principles to sexual offenses against children. Crime Prev Stud 19:7–35Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Stefanie Schmidt
    • 1
  • Olivia Pettke
    • 1
    • 2
  • Robert J. B. Lehmann
    • 2
  • Klaus-Peter Dahle
    • 2
  1. 1.Institut für PsychologieHumboldt-Universität zu BerlinBerlinDeutschland
  2. 2.Institut für Forensische PsychiatrieCharité – Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations