Skip to main content
Log in

Physio-morphological and biochemical responses of dixie grass (Sporobolus virginicus) to NaCl or Na2SO4 stress

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Salinity, one of the most detrimental abiotic stresses, reduces growth, development, biomass, and yield of economically important plant species. Dixie grass (Sporobolus virginicus) is a halophytic, perennial C4 grass that quickly adapts to the coastal saline area and is generally used worldwide as fodder for grazing animals. However, studies have hitherto not investigated the physiological and biochemical basis of salt tolerance in dixie grass. The objective of this study was to evaluate the physiological, morphological, and biochemical responses of dixie grass to different levels of salinity (0, 400, 600, and 800 mM NaCl or Na2SO4) under greenhouse conditions. Overall growth traits of dixie grass were significantly reduced, especially in plants exposed to 800 mM Na2SO4. Leaf area of the plants was reduced by 78.49% and 54.52% over the control at 800 mM Na2SO4 and 800 mM NaCl, respectively. Na+ content in the leaf tissues of Na2SO4-treated plants was enriched by 28.88 folds over the control, causing chlorophyll degradation, diminution of photon yield of PSII, and reduction in the net photosynthetic rate. Greater accumulation of free proline and total soluble sugars in plants exposed to Na2SO4 were evident, which might be responsible for the osmotic adjustment. Alternatively, Na+ crystal secretion in dixie grass reduced ion toxicity, especially in the leaf blade. The study demonstrated that dixie grass counteracts the salt-induced ionic imbalance by modulating biochemical, physiological, and morphological attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Al-Dakheel AJ, Al-Hadrami GS, Al-Shorepy SA, AbuRummani G (2006) Optimizing management practices for maximum production of two salt-tolerant grasses: Sporobolus virginicus and Distichlis spicata. Proc Seventh Ann UAE Univ Res Conf 2:44–50

    Google Scholar 

  • Alhadrami GA, Al-Shorepy SA, Yousef AM (2010) Growth performance of indigenous sheep fed Sporobolus virginicus grass hay grown in saline desert lands and irrigated with high salt content ground water. Trop Anim Health Prod 42:1837–1843

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Yun DJ (2017) Salt stress tolerance: What do we learn from halophytes? J Plant Biol 60:431–439

    Article  CAS  Google Scholar 

  • Amiri B, Rasouli B (2015) Effects of salinity on ion exchanges in Halocnemum strobilaceum and Halostachys caspica. J Rangel Sci 5:72–81

    Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Ashour NI, Serag MS, Abd El-Haleem AK, Mekki BB (1997) Forage production from three grass species under saline irrigation in Egypt. J Arid Environ 37:299–307

    Article  Google Scholar 

  • Balestri E, Lardicci C (2013) The impact of physical disturbance and increased sand burial on clonal growth and spatial colonization of Sporobolus virginicus in a coastal dune system. PLoS ONE 8:e72598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bell HL, O’Leary JW (2003) Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Amer J Bot 90:1416–1424

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494

    Article  PubMed  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2007) Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerant and salt-sensitive lines of indica rice (Oryza sativa L. ssp. indica) in response to salt stress. J Agron Crop Sci 193:157–166

    Article  CAS  Google Scholar 

  • Devinar G, Llanes A, Masciarelli O, Luna V (2013) Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera. Plant Growth Regul 70:247–256

    Article  CAS  Google Scholar 

  • Duan DY, Li WQ, Liu XJ, Ouyang H, An P, Duan DY, Liu WQ (2007) Seed germination and seedling growth of Suaeda salsa under salt stress. Annal Bot Fenn 44:161–169

    CAS  Google Scholar 

  • Endo C, Yamamoto N, Kobayashi M, Nakamura Y, Yokoyama K, Kurusu T, Yano K, Tada Y (2017) Development of simple sequence repeat markers in the halophytic turf grass Sporobolus virginicus and transferable genotyping across multiple grass genera/species/genotypes. Euphytica 213:56

    Article  Google Scholar 

  • Flowers TJ, Glenn EP, Volkov V (2019) Could vesicular transport of Na+ and Cl be a feature of salt tolerance in halophytes? Ann Bot 123:1–18

    Article  CAS  PubMed  Google Scholar 

  • Gong DH, Wang GZ, Si WT, Zhou Y, Liu Z, Jia J (2018) Effects of salt stress on photosynthetic pigments and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russ J Plant Physiol 65:98–103

    Article  CAS  Google Scholar 

  • Grigore MN, Flowers TJ (2020) Evolution in angiosperm halophytes: How functional anatomical adaptations evolved. In: Grigore MN (ed) Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Springer, Dordrecht, pp 1–30

    Chapter  Google Scholar 

  • Grigore MN, Toma C (2017) Salt secretion. In: Grigore MN, Toma C (eds) Anatomical Adaptations of Halophytes. Springer, Cham, pp 147–239

    Chapter  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA, Liu X (2005) Influence of salinity on growth and osmotic relations of Sporobolus ioclados. Pakistan J Bot 37:119–129

    Google Scholar 

  • Hameed M, Nawaz T, Ashraf M, Naz N, Batool R, Ahmad MSA, Riaz A (2013) Physio-anatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turkish J Bot 37:715–724

    CAS  Google Scholar 

  • Han L, Gao Y, Li D (2014) Ion uptake in tall fescue as affected by carbonate, chloride, and sulfate salinity. PLoS ONE 9:e91908

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5:1–18

    Article  Google Scholar 

  • Hossain GS, Waditee R, Hibino T, Tanaka Y, Takabe T (2006) Root specific expression of Na+/H+ antiporter gene from Synechocystis sp. PCC6803 confers salt tolerance of tobacco plant. Plant Biotechnol 23:275–281

    Article  CAS  Google Scholar 

  • Irakoze W, Prodjinoto H, Nijimbere S, Rufyikiri G, Lutts S (2020) NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy 10:864

    Article  CAS  Google Scholar 

  • Irakoze W, Vanpee B, Rufyikiri G, Dailly H, Nijimbere S, Lutts S (2019) Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. J Plant Nutr 42:1001–1015

    Article  CAS  Google Scholar 

  • Karkacier M, Ebras M, Uslu MK, Aksu M (2003) Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J Chromatog Sci 41:331–333

    Article  CAS  Google Scholar 

  • Kawakami Y, Imran S, Katsuhara M, Tada Y (2020) Na+ transporter SvHKT1;1 from a halophytic turf grass is specifically upregulated by high Na+ concentration and regulates shoot Na+ concentration. Inter J Mol Sci 21:6100

    Article  CAS  Google Scholar 

  • Kaymakanova M, Stoeva N (2008) Physiological reaction of bean plants (Phaseolus vulgaris L.) to salt stress. Gen Appl Plant Physiol 34:3–4

    Google Scholar 

  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Li X, Seliskar DM, Gallagher JL (2008) Cellular responses to salinity of two coastal halophytes with different whole plant tolerance: Kosteletzkya virginica (L.) Presl. and Sporobolus virginicus (L.) Kunth. In: Khan MA, Weber DJ (eds) Ecophysiology of High Salinity Tolerant Plants. Springer, Dordrecht, pp 187–200

    Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: A review. Biochem Biophys Res Comm 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Arbona V, Gómez-Cadenas A, Luna V (2016) Metabolomic profiling of the halophyte Prosopis strombulifera shows sodium salt-specific response. Plant Physiol Biochem 108:145–157

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Masciarelli O, Ordoñez R, Isla MI, Luna V (2014) Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera. Biol Plant 58:80–88

    Article  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüttge U (2019) Elimination of salt by recretion: Salt glands and gland-supported bladders in recretohalophytes. In: Hasanuzzaman M, Shabala S, Fujita M (eds) Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses. CABI, Boston, USA, pp 223–239

    Chapter  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Lv X, Chen S, Wang Y (2019) Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Front Plant Sci 10:1431

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcum KB, Murdoch CL (1992) Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytol 120:281–288

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mills AJ, Fey MV, Johnson CE (2004) Effects of sodium sulphate, sodium chloride and manganese sulphate on kikuyu (Pennisetum clandestinum) growth and ion uptake. South Afr J Plant Soil 21:209–213

    Article  CAS  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: Potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Naidoo Y, Naidoo G (2008) Localization of potential ion transport pathways in the salt glands of the halophyte Sporobolus virginicus. In: Khan MA, Weber DJ (eds) Ecophysiology of High Salinity Tolerant Plants. Springer, Dordrecht, pp 173–185

    Google Scholar 

  • Naskar S, Mondal S, Ankure S (2020) Leaf anatomical adaptations of mangroves. In: Grigore MN (ed) Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Ning J, Ai S, Yang S, Cui L, Chen Y, Sun L, Wang R, Li M, Zeng Z (2015) Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Acta Physiol Plant 37:126

    Article  Google Scholar 

  • Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202:472–485

    Article  CAS  Google Scholar 

  • Rasel M, Tahjib-Ul-Arif M, Hossain MA, Hassan L, Farzana S, Brestic M (2021) Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul 40:1853–1868

    Article  CAS  Google Scholar 

  • Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 233:261–268

    Article  CAS  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Aust J Plant Physiol 25:609–616

    CAS  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: Historical perspectives and a world overview of the problem. In: Zaman M, Shahid SA, Heng L (eds) Guideline for Salinity Assessment, Mitigation and Adaptation using Nuclear and Related Techniques. Springer, Cham, pp 43–53

    Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10:938

    Article  CAS  Google Scholar 

  • Shin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Lee JG (2020) Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 10:1627

    Article  CAS  Google Scholar 

  • Shokat S, Großkinsky DK (2019) Tackling salinity in sustainable agriculture—What developing countries may learn from approaches of the developed world. Sustainability 11:4558

    Article  CAS  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeva N, Kaymakanova M (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). J Cent Eur Agric 9:385–391

    Google Scholar 

  • Tada Y, Kawano R, Komatsubara S, Nishimura H, Katsuhara M, Ozaki S, Terashima S, Yano K, Endo C, Sato M, Okamoto M, Sawada Y, Harai MY, Kurusu T (2019a) Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Plant Sci 278:54–63

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Endo C, Katsuhara M, Horie T, Shibasaka M, Nakahara Y, Kurusu T (2019b) High-affinity K+ transporters from a halophyte, Sporobolus virginicus, mediate both K+ and Na+ transport in transgenic Arabidopsis, X. laevis oocytes and yeast. Plant Cell Physiol 60:176–187

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Ohnuma A (2020) Comparative functional analysis of class II potassium transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on ionic transport and salt tolerance in transgenic Arabidopsis. Plants 9:786

    Article  CAS  PubMed Central  Google Scholar 

  • Tanaka K, Ohta K, Haddad PR, Fritz JS, Lee KP, Hasebe K, Ieuji A, Miyanaga A (1999) Acid-rain monitoring in East Asia with a portable-type ion-exclusion-cation-exchange chromatographic analyzer. J Chromatog 850:311–317

    Article  CAS  Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    Article  CAS  Google Scholar 

  • Tarchoune I, Degl’Innocenti E, Kaddour R, Guidi L, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34:607–615

    Article  CAS  Google Scholar 

  • Theerawitaya C, Yamada-Kato N, Singh HP, Cha-um S, Takabe T (2018) Isolation, expression, and functional analysis of developmentally regulated plasma membrane polypeptide 1 (DREPP1) in Sporobolus virginicus grown under alkali salt stress. Protoplasma 255:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Tran TKA, Islam R, le Van D, Rahman MM, Yu RMK, MacFarlane GR (2020) Accumulation and partitioning of metals and metalloids in the halophytic saltmarsh grass, saltwater couch, Sporobolus virginicus. Sci Total Environ 713:136576

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y (2015) Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front Plant Sci 6:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Chang Z, Li D (2013) Physiological responses of creeping bentgrass cultivars to carbonate, chloride, and sulfate salinity. Crop Sci 53:1734–1742

    Article  Google Scholar 

  • Yuan F, Wang B (2020) Adaptation of recretohalophytes to salinity: Salt secretion and salt gland development. In: Grigore MN (ed) Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Springer, Dordrecht, pp 1–21

    Google Scholar 

  • Yuan F, Leng B, Wang B (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Front Plant Sci 7:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun P, Shabala S (2020) Ion transport in salt glands and bladders in halophyte species. In: Grigore MN (ed) Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Springer, Dordrecht, pp 1–19

    Google Scholar 

  • Zhang F, Sapkota S, Neupane A, Yu J, Wang Y, Zhu K, Lu F, Huang R, Zou J (2020) Effect of salt stress on growth and physiological parameters of sorghum genotypes at an early growth stage. Indian J Exp Biol 58:404–411

    CAS  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was granted by The National Science and Technology Development Agency (NSTDA; Grant number P-18-51456).

Funding

This work was supported by the National Science and Technology Development Agency (NSTDA; Grant number P-18-51456).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design and manuscript writing: Suriyan Cha-um and Rujira Tisarum. Experimental setup and maintenance: Natpisit Chaitachawong, Rujira Tisarum, and Thapanee Samphumphuang. Data analysis, review, and manuscript editing: Harminder Pal Singh and Teruhiro Takabe. Funding acquisition: Suriyan Cha-um.

Corresponding author

Correspondence to Suriyan Cha-um.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that this manuscript does not contain any individual person’s data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tisarum, R., Chaitachawong, N., Takabe, T. et al. Physio-morphological and biochemical responses of dixie grass (Sporobolus virginicus) to NaCl or Na2SO4 stress. Biologia 77, 3059–3069 (2022). https://doi.org/10.1007/s11756-022-01060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-022-01060-4

Keywords

Navigation