Skip to main content

Advertisement

Log in

Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera

  • Original Papers
  • Published:
Biologia Plantarum

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, the response of the halophytic shrub Prosopis strombulifera to lowering an osmotic potential (Ψo) to −1.0, −1.9, and −2.6 MPa generated by NaCl, Na2SO4, and the iso-osmotic combination of them was studied at 6, 12, and 24 h after reaching such values in the growing media. By analyzing the content of abscisic acid (ABA) and related metabolites and transpiration rates, we observed that ABA content varied depending on type of salt, salt concentration, organ analyzed, and age of a plant. ABA content in leaves was much higher than in roots, presumably because of rapid biosynthesis and transport from roots. Leaves of Na2SO4-treated plants had the highest ABA content at Ψo −2.6 MPa (24 h) associated with sulfate toxicity symptoms. Significant content of ABA-glucose ester (ABA-GE) was found in both the roots and leaves, whereas only low content of phaseic acid (PA) and dihydrophaseic acid (DPA). The roots showed high ABA-GE accumulation in all treatments. The highest content of free ABA was correlated with ABA-GE glucosidase activity. The results show that ABA-GE and free ABA work together to create a specific stress signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ABA-GE:

abscisic acid glucose ester

DPA:

dihydrophaseic acid

PA:

phaseic acid

Ψo :

osmotic potential

References

  • Burguess, J.: An improved photometer. — School Sci. Rev. 64: 699–701, 1983.

    Google Scholar 

  • Burkart, A.: A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Catalogue of the reconized species of Prosopis. — J. Arnold Arbor. 57: 450–525, 1976.

    Google Scholar 

  • Cantero, J., Cantero, A., Cisneros, J. (ed.): Vegetation of Hydro-Halomorphic landscapes from central Argentina. — Fundación Universidad Nacional de Río Cuarto, Córdoba 1996.

  • Catalán, L., Balzarini, M., Taleisnik, E., Sereno, R., Karlin, U.: Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). — Forest Ecol. Manage. 63: 347–357, 1994.

    Article  Google Scholar 

  • Cutler, S., Rodriguez, P., Finkelstein, R., Abrams, S.: Abscisic acid: emergence of a core signaling network. — Annu. Rev. Plant Biol. 61: 651–679, 2010.

    Article  CAS  PubMed  Google Scholar 

  • De Torres-Zabala, M., Truman, W., Bennett, M., Lafforgue, G., Mansfield, J., Rodriguez Egea, P., Bogre, L., Grant, M.: Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26: 1434–1443, 2007.

    Article  PubMed  Google Scholar 

  • Earns, L., Goodger, J., Alvarez, S., Marsh, E., Berla, B., Lockhart, E., Jung, J., Li, P., Bohnert, H., Schachtman, D.: Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. — J. exp. Bot. 61: 3395–3405, 2012.

    Google Scholar 

  • Felker, P.: Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. — In: De la Barrera, E., Smith, W. (ed.): Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park Nobel. Pp. 1–41.

  • Mildred E. Mathias Botanical Garden, University of California, Los Angeles 2007.

  • Flowers, T., Colmer, T.: Salinity tolerance in halophytes. — New Phytol. 179: 945–963, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, P., Bressan, R., Zhu, J., Bohnert, H.: Plant cellular and molecular response to high salinity. — Plant mol. Biol. 51: 463–499, 2000.

    CAS  Google Scholar 

  • Ikegami, K., Okamoto, M., Seo, M., Koshiba, T.: Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. — J. Plant Res. 122: 235–243, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, S., Edward, G., Lennard, B., Rengel, Z.: Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliate) and wheat grass (Thinopyrum ponticum) zonation on salt land with a shallow-water table, plant growth and Na+ and K+ concentrations in the leaves. — Plant Soil 329: 91–104, 2012.

    Article  Google Scholar 

  • Kato-Noguchi, H., Tanaka, Y.: Effect of ABA-b-Dglucopyranosyl ester and activity of ABA-D-glucosidase in Arabidopsis thaliana. — J Plant Physiol. 165: 788–790, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kholová, J., Hash, C., Kakkera, A., Kočová, M., Vadez, V.: Constitutive water conserving mechanisms is correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. — J. exp. Bot. 61: 369–377, 2010.

    Article  PubMed  Google Scholar 

  • Lee, K., Piao, H., Kim, H., Choi, S., Jiang, F., Hartung, W., Hwang, I., Kwak, J., Lee, I., Hwang, I.: Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. — Cell 126: 1109–1120, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lim, E., Doucet, C., Hou, B., Jackson, R., Abrams, S., Bowles, D.: Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. — Tetrahedron Asymmetry 16: 143–147, 2005.

    Article  CAS  Google Scholar 

  • Llanes, A., Reginato, M., Palacio, G., Luna, V.: Biochemical indicators of salinity tolerance in the halophyte Prosopis strombulifera are differentially affected by NaCl and Na2SO4. — In: Öztürk, M., Mermut, A., Celik, A. (ed.): Urbanisation, Land Use, Land Degradation and Environment. Pp. 81–91. Birkhäuser Verlag, Basel — Boston — Berlin 2012.

    Google Scholar 

  • Lovelock, C., Ball, M.: Influence of salinity on photosynthesis of halophytes. — In: Läuchli, A., Lüttge, U. (ed.): Salinity: Environment-Plants-Molecules. Pp. 315–339. Kluwer Academic Publishers, Dordrecht 2002.

    Google Scholar 

  • Luna, V., Soriano, M., Bottini, R., Sheng, C., Pharis, R.: Levels of endogenous gibberellins, abscisic acid, indol 3 acetic acid and naringenin during dormancy of peach flower buds. — Acta Hort. 329: 265–267, 1993.

    Google Scholar 

  • Manivannan, P., Jaleel, C., Somasundaram, R., Panneerselvam, R.: Osmoregulation and antioxidant metabolism in drought stressed Helianthus annuus under triadimefon drenching. — Comp. Rend. Biol. 331: 418–425, 2008.

    Article  CAS  Google Scholar 

  • Mantri, N., Ford, R., Coram, T., Pang, E.: Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. — BMC Genom. 8: 303, 2007.

    Article  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nambara, E., Marion-Poll, A.: Abscisic acid biosynthesis and catabolism. — Annu. Rev. Plant Biol. 56: 165–185, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Oritani, T., Kyoto, H.: Biosynthesis and metabolism of abscisic acid and related compounds. — Natur. Prod. Rep. 20: 414–425, 2003.

    Article  CAS  Google Scholar 

  • Priest, D., Ambrose, S., Vaistij, F., Elias, L., Higgins, G., Ross, A., Abrams, S., Bowles, D.: Use of the glucosyl transferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. — Plant J. 46: 492–502, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Reginato, M.: Responses of Prosopis strombulifera halophytic plant to different salt mediums. Modification of morphophysiological parameters and hormonal regulation. — PhD Thesis. Department of Plant Physiology, University of Río Cuarto, Córdoba 2009.

    Google Scholar 

  • Reginato, M., Sgroy, V., Llanes, A., Cassán, F., Luna, V.: The american halophyte Prosopis strombulifera, a new potential tool to confer salt tolerance to crops. — In: Ashraf, M., Öztürk, M. (ed.): Crop Production for Agricultural Improvement. Pp 115–144. Springer. New York 2012.

    Chapter  Google Scholar 

  • Reinoso, H., Sosa, L., Ramírez, L., Luna, V.: Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). — Can. J. Bot. 82: 618–628, 2004.

    Article  Google Scholar 

  • Reinoso, H., Sosa, L., Reginato, M., Luna, V.: Histological alterations induced by sodium sulphate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. — World J. agr. Sci. 1: 109–119, 2005.

    Google Scholar 

  • Sauter, A., Dietz, K., Hartung, W.: A possible stress physiological role of abscisic acid conjugates in root-toshoot signaling. — Plant Cell Environ. 25: 223–228, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sauter, A., Hartung, W.: Radial transport of abscisic acid conjugates in maize roots: its implication for long distance stress signals. — J. exp. Bot. 51: 929–935, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Schachtman, D., Goodger, J.: Chemical root to shoot signaling under drought. — Trends Plant Sci. 13: 281–287, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, R., Davies, W.: Variability among species in the apoplastic pH signaling response to drying soils. — J. exp. Bot. 60: 4363–4370, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Shi, D., Sheng, Y.: Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. — Environ. exp. Bot. 54: 8–21, 2005.

    Article  CAS  Google Scholar 

  • Sirichandra, C., Gu, D., Hu, H., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., Kwak, J.: Phosphorylation of Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. — FEBS Lett. 583: 2982–2986, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Sosa, L., Llanes, A., Reinoso, H., Reginato, M., Luna, V.: Osmotic and specific ion effects on the germination of Prosopis strombulifera. — Ann. Bot. 96: 261–267, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Steel, R., Torrie, J. (ed.): Bioestadística: Principios y Procedimientos. [Biostatistics: Principles and Procedures.] — Mc Graw-Hill, Barcelona 1995. [In Span.]

    Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. — Curr. Opin. Biotechnol. 17: 113–122, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. — Plant Cell Physiol. 51: 1821–1839, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Verslues, P., Zhu, J.: New developments in abscisic acid perception and metabolism. — Curr. Opin. Plant Biol. 10: 447–452, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Chen, S., Peng, Y., Shen, Y.: Abscisic acid-specific binding sites in the flesh of developing apple fruit. J. exp. Bot. 52: 2097–2103, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Jia, W., Yang, J., Ismail, A.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crops Res. 97: 111–119, 2006.

    Article  Google Scholar 

  • Zhou, R., Squires, T., Ambrose, S., Abrams, S., Ross, A., Cutler, A.: Rapid extraction of ABA and its metabolites for liquid chromatography-tandem mass spectrometry analysis. — J. Chromatogr. 10: 75–85, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Luna.

Additional information

Acknowledgements: This study was supported with funds from CONICET PIP No 5628, PICTO-ANPCYT-UNRC No 30093, ICGBE-TWAS Joint Biotechnology Programme, and SECYT — Universidad Nacional de Río Cuarto and Ministerio de Ciencia y Tecnología de la Provincia de Córdoba (R No 1210/2007), Argentina, to V.L. We thank Dr. Steve Anderson for editing English text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanes, A., Masciarelli, O., Ordóñez, R. et al. Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera . Biol Plant 58, 80–88 (2014). https://doi.org/10.1007/s10535-013-0365-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0365-6

Additional key words

Navigation