Skip to main content
Log in

Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

It has been shown that abscisic acid (ABA) and salicylic acid (SA) act as endogenous signal molecules responsible for inducing abiotic stress tolerance in plants. However, our knowledge on the role of both phytohormones in response to environmental conditions in halophytic plants is still limited. In this study endogenous ABA and SA levels, growth parameters and chlorophylls content were determined in leaves and roots of the halophyte Prosopis strombulifera cultivated under increasing NaCl and Na2SO4 concentrations, at 30 and 70 % relative humidity (RH) conditions. Endogenous ABA and SA content differed depending on the salt type and concentration, RH, plant age and the organ analyzed. Under low RH conditions P. strombulifera growth was strongly inhibited and chlorophyll a and b content were decreased. In leaves of Na2SO4-treated plants at 30 % RH, high ABA levels were correlated with protection against dehydration and ion toxicity. Instead, high SA levels were correlated with the damaging effect of sulfate anion and low RH on plant growth. NaCl-treated plants growth was also inhibited at 30 % RH although levels of both hormones were not significantly increased. Taken together, the salt toxic effects on growth parameters and photosynthetic pigments were accentuated by low RH conditions and these responses were reflected on ABA and SA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

RH:

Relative humidity

SA:

Salicylic acid

References

  • Al-Hakimi AM, Hamada AM (2001) Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamine or sodium salicylate. Biol Plant 44:253–261

    Google Scholar 

  • Almeida Viégas R, Martins Fausto MJ, Queiroz JE, Almeida Rocha IM, Gomez Silveira JA, Almeida Viégas P (2004) Growth and total-N content of Prosopis juliflora (S.W.) D.C. are stimulated by low NaCl levels. Braz J Plant Physiol 16:65–68

    Google Scholar 

  • Arfan M, Athar HR, AsRHaf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  PubMed  CAS  Google Scholar 

  • Asch F, Drffling K, Dingkuhn M (1995) Response of rice varieties to soil salinity and air humidity: a possible involvement of root-borne ABA. Plant Soil 177:11–19

    Article  CAS  Google Scholar 

  • Benschop J, Jackson MB, Guhl K, Vreeburg RA, Croker SJ, Peeters A, Voesenek LA (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756–768

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Peleg Z (2011) Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biol 14:290–295

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Brownell PF (1979) Sodium as an essential micronutrient element for plants and its possible role in metabolism. Adv Bot Res 7:117–224

    Google Scholar 

  • Brownell PF, Crossland CJ (1972) The requirement for sodium as a micronutrient by species having the C4 dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797

    Google Scholar 

  • Bourbouloux A, Raymond P, Detrot S (1998) Effect of salicylic acid on sugar and amino acids uptake. J Ex Botany 49:239–247

    CAS  Google Scholar 

  • Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Catalogue of the recognized species of Prosopis. J Arnold Arboretum 57:450–525

    Google Scholar 

  • Chaves M, Maroco J, Pereira JS (2003) Understanding plant response to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. Eur Mold Biol Organ J 26:1434–1443

    Article  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Fageria N (1985) Salt tolerance of rice cultivars. Plant Soil 88:237–243

    Article  CAS  Google Scholar 

  • Fan J, Crooks C, Lamb C (2008) High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens lux. Plant J 53:393–399

    Article  PubMed  CAS  Google Scholar 

  • Felker P (2007) Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: E De la Barrera, Smith J (eds) Perspectives in biophysical plant ecophysiology a tribute to park nobel. Mildred E. Mathias Botanical Garden, University of California, pp 1–41

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Grattan S R, Grieve C M (1999) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress, pp 203–229

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Guneri E, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Zhao Y, Jin D, Zhang L, Bi X, Chen H, Xu Q, Ma C, Li G (2011) Salicylic acid altering Arabidopsis mutants response to salt stress. Plant Soil 10:11104–11111

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  CAS  Google Scholar 

  • Ibanez AJ, Scharte J, Bones P, Pirkl A, Meldau S, Baldwin I, Hillenkamp F, Weis E, Dreisewerd K (2010) Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis. Plant Methods 6:14–16

    Article  PubMed  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Llanes A (2010) Indicadores fisiológicos y moleculares de la tolerancia a salinidad en Prosopis strombulifera. Su correlación con los niveles endógenos de ABA. PhD Thesis, Universidad Nacional de Río Cuarto, Córdoba, Argentina

  • Llanes A, Bertazza G, Palacio G, Luna V (2012) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biology N626 (ed) Wiley-Blackwell (in press)

  • Macri F, Vianello A, Pennazio S (1986) Salicylate-collapsed plumbaginifolia (L.) membrane potential in pea stem mitochondria. Physiol Plant 67:136–140

    Article  CAS  Google Scholar 

  • Manivannan P, Abdul Jaleel C, Sankar B, Kishorekumar A, Murali PV, Somasundaram R, Panneerselvam R (2008) Mineral uptake and biochemical changes in Heliantus annus under treatment with different sodium salts. Colloids Surf 62:58–63

    Article  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nemeth M, Tibor J, Horvath E, Paldi E, Gabrella S (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Google Scholar 

  • Neue HU, EI-Naggar M A, Rashid M (1990) Responses and tolerance mechanisms of rice to saline soil conditions. Transactions, vol IV, 14th International Congress of Soil Science, Kyoto, pp 50–55

  • Poor P, Gemes K, Horva F, Szepesi A, Simon ML, Tari I (2010) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. doi:10.1111/j.1438-8677

  • Reginato M, Luna V, Becatti E, Castagna A, Ranieri A (2010) Polyphenols content in salinized seedlings of the halophytic legume Prosopis Strombulifera. Book of abstracts, first scientific meeting COST action FA0901 putting halophytes to work-from genes to ecosystems. Naples, Italy, p 47

  • Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V (2012) Na2SO4 and NaCl determine different growth responses and ion accumulation in the halophytic legume Prosopis strombulifera. Plant Biol. doi:2.10.1111/pbl.12001

  • Reinoso H, Sosa L, Ramirez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628

    Article  Google Scholar 

  • Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 2:109–119

    Google Scholar 

  • Reynols MP, Rebetzke GJ, Pellegrineschi A, Trethowan R (2005) Genetic, physiological and breeding approaches to wheat improvement under drought. In: Ribaut JM (ed) Drought tolerance in cereals. Howorth’s Food Products Press, New York

    Google Scholar 

  • Rezaei Nejad A, Van Meeteren U (2007) The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. J Exp Bot 58:627–636

    Article  Google Scholar 

  • Rezaei Nejad A, Van Meeteren U (2008) Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana. J Exp Bot 59:289–301

    Article  PubMed  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8-hydroxylase in rice. Plant Cell Physiol 48:287–298

    Article  PubMed  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  Google Scholar 

  • Santos C, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Shakirova F, Sakhabutdinova A, Bezrukova M, Fatkhutdinova R, Fatkhutdinova D (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267

    Article  PubMed  CAS  Google Scholar 

  • Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J of Plant Physiol 166:914–925

    Article  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Tari I, Csiszar J, Szalai G, Horvath F, Pecsvaradi A (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szegediensis 46:55–56

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2001a) Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. Acta Hor. (ISHS) 560:285–292

    CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001b) Effects of Salinity on Endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Tian S (2008) Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Tech 49:379–385

    Article  CAS  Google Scholar 

  • Yalpani N, León J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stress. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhou R, Squires TM, Ambrose SJ, Abrams SR, Ross AR, Cutler AJ (2003) Rapid extraction of ABA and its metabolites for liquid chromatography-tandem mass spectrometry analysis. J Chromatogr 1010:75–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported with funds from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Mincyt-Córdoba and SECYT- Universidad Nacional de Río Cuarto and Ministerio de Ciencia y Tecnología de la Provincia de Córdoba, Argentina, to Virginia Luna. We thank to Lic. María Celeste Varela for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Devinar.

Additional information

G. Devinar and A. Llanes have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devinar, G., Llanes, A., Masciarelli, O. et al. Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera . Plant Growth Regul 70, 247–256 (2013). https://doi.org/10.1007/s10725-013-9796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9796-5

Keywords

Navigation