Andorkó R, Kádár F (2006) Carabid beetles (Coleoptera: Carabidae) communities in a woodland habitat in Hungary. Entomol Fenn 17:221–228. https://doi.org/10.33338/ef.84334
Article
Google Scholar
Baars MA (1979) Patterns of movements of radioactive carabid beetles. Oecologia 44:125–140. https://doi.org/10.1007/BF00346411
CAS
Article
PubMed
Google Scholar
Batsleer F, Bonte D, Dekeukeleire D, Goossens S, Poelmans W, Van der Cruyssen E, Maes D, Vandegehuchte ML (2020) The neglected impact of tracking devices on terrestrial arthropods. Methods Ecol Evol 11:350–361. https://doi.org/10.1111/2041-210X.13356
Article
Google Scholar
Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manage 258:525–537. https://doi.org/10.1016/j.foreco.2009.01.053
Article
Google Scholar
Brouwers NC, Newton AC (2009) Movement rates of woodland invertebrates: A systematic review of empirical evidence. Insect Conserv Divers 2:10–22. https://doi.org/10.1111/j.1752-4598.2008.00041.x
Article
Google Scholar
Butterfield J, Luff MLL, Baines M, Eyre MDD (1995) Carabid beetle communities as indicators of conservation potential in upland forests. For Ecol Manage 79:63–77. https://doi.org/10.1016/0378-1127(95)03620-2
Article
Google Scholar
Chiasson B, Moreau G (2020) Assessing the lifeboat effect of retention forestry using flying beetle assemblages. For Ecol Manage 118784. https://doi.org/10.1016/j.foreco.2020.118784
Christensen M, Emborg J (1996) Biodiversity in natural versus managed forest in Denmark. For Ecol Manage 85:47–51. https://doi.org/10.1016/S0378-1127(96)03749-8
Article
Google Scholar
Den Boer PJ (1990a) Density limits and survival of local populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48. https://doi.org/10.1046/j.1420-9101.1990.3010019.x
Article
Google Scholar
Den Boer PJ (1990b) The survival value of dispersal in terrestrial arthropods. Biol Conserv 54:175–192. https://doi.org/10.1016/0006-3207(90)90050-Y
Article
Google Scholar
Didham RK, Ghazoul J, Storck NE, Davis AJ (1996) Insects in fragmeneted forests: a functional approach. Trends Ecol Evol 11:255–260. https://doi.org/10.1016/0169-5347(96)20047-3
Dövényi Z (2010) Magyarország kistájainak katasztere. Magyar Földtani Intézet, Budapest
Google Scholar
Dray S, Royer-Carenzi M, Calenge C (2010) The exploratory analysis of autocorrelation in animal-movement studies. Restor Ecol 25:673–681. https://doi.org/10.1007/s11284-010-0701-7
Article
Google Scholar
du Bus de Warnaffe G, Lebrun P (2004) Effects of forest management on carabid beetles in Belgium: implications for biodiversity conservation. Biol Conserv 118:219–234. https://doi.org/10.1016/j.biocon.2003.08.015
Article
Google Scholar
Elek Z, Kovács B, Aszalós R, Boros G, Samu F, Tinya F, Ódor P (2018) Taxon-specific responses to different forestry treatments in a temperate forest. Sci Rep 8:16990. https://doi.org/10.1038/s41598-018-35159-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Eötvös CB, Lövei GL, Magura T (2020) Predation pressure on sentinel insect prey along a riverside urbanization gradient in Hungary. Insects 11:97. https://doi.org/10.3390/insects11020097
Article
PubMed Central
Google Scholar
European Commission (1992) Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. https://www.ec.europa.eu/environment/nature/leg-islation/habitatsdirective/index_en.htm/.Accessed 18 Dec 2020
Ferrante M, Lo Cacciato A, Lövei GL (2014) Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars. Eur J Entomol 111:1–6. https://doi.org/10.14411/eje.2014.082
Article
Google Scholar
Fukuda S, Konuma J (2019) Using three-dimensional printed models to test for aposematism in a carabid beetle. Biol J Linn Soc 128:735–741. https://doi.org/10.1093/biolinnean/blz127
Article
Google Scholar
Grüm L (1971a) Remarks on the differentiation in Carabidae mobility. Ekologia Polska 19:47–56
Google Scholar
Grüm L (1971b) Spatial differentiation of the Carabus L. (Carabidae, Coleoptera) mobility. Ekologia Polska 19:1–34
Google Scholar
Hüppop O, Ciach M, Diehl R, Reynolds DR, Stepanian PM, Menz MHM (2020) Perspectives and challenges for the use of radar in biological conservation. Ecography 42:912–930. https://doi.org/10.1111/ecog.04063
Article
Google Scholar
Kareiva P, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238. https://doi.org/10.1007/BF00379695
CAS
Article
PubMed
Google Scholar
Kissling DW, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 83:511–530. https://doi.org/10.1111/brv.12065
Article
Google Scholar
Koivula MJ, Venn S, Hakola P, Niemelä J (2019) Responses of boreal ground beetles (Coleoptera, Carabidae) to different logging regimes ten years post harvest. For Ecol Manage 436:27–38. https://doi.org/10.1016/j.foreco.2018.12.047
Article
Google Scholar
Kuuluvainen T, Tahvonen O, Aakala T (2012) Even-aged and uneven-aged forest management in boreal Fennoscandia: A review. Ambio 41:720–737. https://doi.org/10.1007/s13280-012-0289-y
Article
PubMed
PubMed Central
Google Scholar
Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM (2012) Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology 93:2336–2342. https://doi.org/10.1890/11-2241.1
Article
PubMed
Google Scholar
Liégeois M, Tixier P, Beaudoin-Ollivier L (2016) Use of radio telemetry for studying flight movements of Paysandisia archon (Lepidoptera: Castniidae). J Insect Behav 29:199–213
Lindenmayer DB, Likens GE, Andersen A, Bowman D, Bull CM, Burns E, Dickman CR, Hoffmann AA, Keith DA, Liddell MJ, Lowe AJ, Metcalfe DJ, Phinn SR, Russell-Smith J, Thurgate N, Wardle GM (2012) Value of long-term ecological studies. Austral Ecol 37:745–757. https://doi.org/10.1111/j.1442-9993.2011.02351.x
Article
Google Scholar
Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256. https://doi.org/10.1146/annurev.en.41.010196.001311
Article
PubMed
Google Scholar
Makowski D, Ben-Shachar M, Lüdecke D (2019) bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4:1541. https://doi.org/10.21105/joss.01541
Article
Google Scholar
McClintock BT, Langrock R, Gimenez O, Cam E, Borchers DL, Glennie R, Patterson TA (2020) Uncovering ecological state dynamics with hidden Markov models. Ecol Lett 23:1878–1903. https://doi.org/10.1111/ele.13610
Article
PubMed
PubMed Central
Google Scholar
Michelot T, Langrock R, Patterson TA (2016) moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7:1308–1315. https://doi.org/10.1111/2041-210X.12578
Article
Google Scholar
Morey RD, Rouder JN (2018) BayesFactor: Computation of bayes factors for common designs. R package version 0.9.12–4.2. https://CRAN.R-project.org/package=BayesFactor. Accessed 18 Dec 2020
Mori AS, Kitagawa R (2014) Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol Conserv 175:65–73. https://doi.org/10.1016/j.biocon.2014.04.016
Article
Google Scholar
Negro MA, Casale AC, Migliore LUCA, Palestrini CL, Rolando AN (2008) Habitat use and movement patterns in the endangered ground beetle species, Carabus olympiae (Coleoptera: Carabidae). Eur J Entomol 105:105–112. https://doi.org/10.14411/eje.2008.015
Article
Google Scholar
Negro M, Caprio E, Leo K, Maritano U, Roggero A, Vacchiano G, Palestrini C, Rolando A (2017) The effect of forest management on endangered insects assessed by radio-tracking: The case of the ground beetle Carabus olympiae in European beech Fagus sylvatica stands. For Ecol Manage 406:125–137. https://doi.org/10.1016/j.foreco.2017.09.065
Niemelä J, Koivula M, Kotze DJ (2007) The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J Insect Conserv 11:5–18. https://doi.org/10.1007/s10841-006-9014-0
Article
Google Scholar
Paillet Y, Archaux F, du Puy S, Bouget C, Boulanger V, Debaive N, Gilg O, Gosselin F, Guilbert E (2018) The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J Appl Ecol 55:2147–2159. https://doi.org/10.1111/1365-2664.13181
Article
Google Scholar
Parsons PA (1992) Fluctuating asymmetry: A biological monitor of environmental and genomic stress. Heredity 68:361–364. https://doi.org/10.1038/hdy.1992.51
Article
PubMed
Google Scholar
Patterson TA, Parton A, Langrock R, Blackwell PG, Thomas L, King R (2017) Statistical modeling of individual animal movement: an overview of key methods and a discussion of practical challenges. Adv Stat Anal 101:399–438. https://doi.org/10.1007/s10182-017-0302-7
Article
Google Scholar
Pommerening A, Murphy ST (2004) A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77:27–44. https://doi.org/10.1093/forestry/77.1.27
Article
Google Scholar
R Core Team (2020) R: A language and environment for statistical computing, version: 3.6.3. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 18 Dec 2020
Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–163. https://doi.org/10.2307/271063
Article
Google Scholar
Riecken U, Raths U (1996) Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Annal Zool Fenn 33:109–116
Google Scholar
Růžičková J, Veselý M (2016) Using radio telemetry to track ground beetles: Movement of Carabus ullrichii. Biologia 71:924–930. https://doi.org/10.1515/biolog-2016-0108
Růžičková J, Veselý M (2018) Movement activity and habitat use of Carabus ullrichii (Coleoptera: Carabidae): The forest edge as a mating site? Entomol Sci 21:76–83. https://doi.org/10.1111/ens.12286
Article
Google Scholar
Růžičková J, Bérces S, Ackov S, Elek Z (2021) Individual movement of large carabids as a link for activity density patterns in various forestry treatments. Acta Zool Acad Sci Hung 67:77–86. https://doi.org/10.17109/AZH.67.1.77.2021
Article
Google Scholar
Spake R, Barsoum N, Newton AC, Doncaster CP (2016) Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. For Ecol Manage 359:300–308. https://doi.org/10.1016/j.foreco.2015.10.008
Article
PubMed
PubMed Central
Google Scholar
Thiele HU (1977) Carabid beetles in their environments. Springer, Berlin, 369 pp. https://doi.org/10.1007/978-3-642-81154-8
Book
Google Scholar
Turchin P, Odendaal FJ, Rausher MD (1991) Quantifying insect movement in the field. Environ Entomol 20:955–963. https://doi.org/10.1093/ee/20.4.955
Article
Google Scholar
Vinatier F, Chailleux A, Duyck PF, Salmon F, Lescourret F, Tixier P (2010) Radiotelemetry unravels movements of a walking insect species in heterogeneous environments. Anim Behav 80:221–229. https://doi.org/10.1016/j.anbehav.2010.04.022
Article
Google Scholar
Wallin H, Ekbom BS (1988) Movements of carabid beetles (Coleoptera: Carabidae) inhabiting cereal fields: a field tracing study. Oecologia 77:39–43. https://doi.org/10.1007/BF00380922
CAS
Article
PubMed
Google Scholar