Skip to main content
Log in

The exploratory analysis of autocorrelation in animal-movement studies

  • Original Article
  • Published:
Ecological Research

Abstract

Studies of animal movements have been popularized for many large and shy species by the increasing use of radio telemetry methods (VHF and GPS technologies). Data are collected with high sampling frequency, and consist of successive observations of the position of an individual animal. The statistical analysis of such data poses several problems due to the lack of independence of successive observations. However, the statistical description of the temporal autocorrelation between successive steps is rarely performed by ecologists studying the patterns of animals movements. The aim of this paper is to warn ecologists against the consequences of failing to consider this aspect. We discuss the various issues related to analyzing autocorrelated data, and show how the exploratory analysis of autocorrelation can both reveal important biological insights and help to improve the accuracy of movement models. We suggest some tools that can be used to measure, test, and adjust for temporal autocorrelation. A short ecological illustration is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aschoff J (1966) Circadian activity pattern with two peaks. Ecology 47:657–662

    Article  Google Scholar 

  • Austin D, Bowen W, McMillan J (2004) Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator. Oikos 105:15–30

    Article  Google Scholar 

  • Bailey H, Thompson P (2006) Quantitative analysis of the bottlenose dolphin movement patterns and their relationship with foraging. J Anim Ecol 75:456–465

    Article  PubMed  Google Scholar 

  • Banks J, Yasenak C (2003) Effects of plot vegetation diversity and spatial scale on Coccinella septempunctata movement in the absence of prey. Entomol Exp Appl 108:197–204

    Article  Google Scholar 

  • Bergman C, Schaeffer J, Luttich S (2000) Caribou movement as a correlated random walk. Oecologia 123:364–374

    Article  Google Scholar 

  • Bourgoin G, Garel M, Dubray D, Maillard D, Gaillard J (2009) What determines global positioning system fix success when monitoring free-ranging mouflon? Eur J Wildl Res 55:603–613

    Article  Google Scholar 

  • Bowne D, Peles J, Barrett G (1999) Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus). Landsc Ecol 14:53–65

    Article  Google Scholar 

  • Brillinger D, Preisler H, Ager A, Kie J (2004) An exploratory data analysis (EDA) of the paths of moving animals. J Stat Plan Infer 122:43–63

    Article  Google Scholar 

  • Cain M (1989) The analysis of angular data in ecological field studies. Ecology 70:1540–1543

    Article  Google Scholar 

  • Cain M, Carson W, Root R (1991) Long-term suppression of insect herbivores increases the production and growth of Solidago atissima rhizomes. Oecologia 88:251–257

    Article  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Calenge C, Dray S, Royer-Carenzi M (2009) The concept of animals trajectories from a data analysis perspective. Ecol Inform 4:34–41

    Article  Google Scholar 

  • Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A (2005) Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol 147:583–591

    Article  Google Scholar 

  • De Solla S, Bonduriansky R, Brooks R (1999) Eliminating autocorrelation reduces biological relevance of home range estimates. J Anim Ecol 68:221–234

    Article  Google Scholar 

  • Diggle P (1990) Time series: a biostatistical introduction. Oxford University Press, Oxford

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Dumont C, Himmelman J, Robinson S (2007) Random movement pattern of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 340:80–89

    Article  Google Scholar 

  • Dunn J, Gipson P (1977) Analysis of radio telemetry data in studies of home range. Biometrics 33:85–101

    Article  Google Scholar 

  • Firle S, Bommarco R, Ekbom B, Natiello M (1998) The influence of movement and resting behavior on the range of three carabid beetles. Ecology 79:2113–2122

    Article  Google Scholar 

  • Fisher N (1996) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin D, Morales J, Boyce MS (2005) Elk winter foraging at fine scale in Yellowstone National Park. Oecologia 145:335–346

    Article  PubMed  Google Scholar 

  • Frair J, Nielsen SE, Merrill E, Lele S, Boyce MS, Munro R, Stenhouse G, Beyer H (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41:201–212

    Article  Google Scholar 

  • Frair J, Merrill E, Visscher D, Fortin D, Beyer H, Morales J (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc Ecol 20:273–287

    Article  Google Scholar 

  • Graves T, Waller J (2006) Understanding the causes of missed global positioning system telemetry fixes. J Wildl Manag 70:844–851

    Article  Google Scholar 

  • Griffith DA, Peres-Neto P (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Jammalamadaka S, Sengupta A (2001) Topics in circular statistics. World Scientific Press, Singapore

    Book  Google Scholar 

  • Jupp P, Mardia K (1980) A general correlation coefficient for directional data and related regression problems. Biometrika 67:163–173

    Article  Google Scholar 

  • Kareiva P, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238

    Article  Google Scholar 

  • Lancaster J, Buffin-Bélanger T, Reid I, Rice S (2006) Flow- and substratum-mediated movement by a stream insect. Freshw Biol 51:1053–1069

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lorch P, Sword G, Gwynne D, Anderson G (2005) Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecol Entomol 30:548–555

    Article  Google Scholar 

  • Marsh L, Jones R (1988) The form and consequences of random walk movement models. J Theor Biol 133:113–131

    Article  Google Scholar 

  • Martin J, Calenge C, Quenette P, Allainé D (2008) Importance of movement constraints in habitat selection studies. Ecol Model 213:257–262

    Article  Google Scholar 

  • McCulloch C, Cain M (1989) Analyzing discrete movement data as a correlated random walk. Ecology 70:383–388

    Article  Google Scholar 

  • Morales J, Ellner S (2002) Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology 83:2240–2247

    Article  Google Scholar 

  • Nathan R, Getz W, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse P (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105:19052–19059

    Article  CAS  PubMed  Google Scholar 

  • Nolet B, Mooij W (2002) Search paths of swans foraging on spatially autocorrelated tubers. J Anim Ecol 71:451–462

    Article  Google Scholar 

  • Odendaal F, Turchin P, Stermitz F (1989) Influence of host-plant density and male harassment on the distribution of female Euphydras anicia (Nymphalidae). Oecologia 78:283–288

    Article  Google Scholar 

  • Parks E, Derocher A, Lunn N (2006) Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can J Zool 84:1281–1294

    Article  Google Scholar 

  • Patterson T, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  PubMed  Google Scholar 

  • Peres-Neto P (2006) A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models. Oecol Bras 10:105–119

    Article  Google Scholar 

  • Preisler H, Ager A, Johnson B, Kie J (2004) Modeling animal movements using stochastic differential equations. Environmetrics 15:643–657

    Article  Google Scholar 

  • Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation-level parameters. Am Nat 164:130–153

    Article  Google Scholar 

  • Root R, Kareiva P (1984) The search of resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165

    Article  Google Scholar 

  • Schaeffer J, Messier F (1997) Footedness in foraging muskoxen Ovibos moschatus. Acta Theriol 42:335–338

    Google Scholar 

  • Schick R, Loarie S, Colchero F, Best B, Boustany A, Conde D, Halpin P, Joppa L, McClellan C, Clark J (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350

    Article  PubMed  Google Scholar 

  • Siniff D, Jessen C (1969) A simulation model of animal movement patterns. Adv Ecol Res 6:185–219

    Article  Google Scholar 

  • Solow AR (1990) A note on the statistical properties of animal locations. J Math Biol 29:189–193

    Article  CAS  PubMed  Google Scholar 

  • Swihart R, Slade N (1985a) Testing for independence of observations in animal movements. Ecology 66:1176–1184

    Article  Google Scholar 

  • Swihart RK, Slade NA (1985b) Influence of sampling interval on estimates of home-range size. J Wild Manage 49:1019–1025

    Article  Google Scholar 

  • Tukey J (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  • Tukey J (1980) We need both exploratory and confirmatory. Am Stat 34:23–25

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • von Neumann J (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann Math Stat 12:367–395

    Article  Google Scholar 

  • von Neumann J, Kent R, Bellinson HR, Hart B (1941) The mean square successive difference. Ann Math Stat 12:153–162

    Article  Google Scholar 

  • Wald A, Wolfowitz J (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat 14:378–388

    Article  Google Scholar 

  • Wittemyer G, Polansky L, Douglas-Hamilton I, Getz W (2008) Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses. Proc Natl Acad Sci 105:19108–19113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Jon Swenson and to the Scandinavian Brown Bear Research Project for kindly providing the data. Financial support has been provided by the ANR (project Mobilité ANR-05-BDIV-008) and the ONCFS. We would like to thank Jean-Michel Gaillard, Jodie Martin, and Dominique Allainé for their comments on earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Dray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (137 KB)

About this article

Cite this article

Dray, S., Royer-Carenzi, M. & Calenge, C. The exploratory analysis of autocorrelation in animal-movement studies. Ecol Res 25, 673–681 (2010). https://doi.org/10.1007/s11284-010-0701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-010-0701-7

Keywords

Navigation