Skip to main content
Log in

Remarkable polyhedra related to set functions, games and capacities

  • Invited Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

Set functions are widely used in many domains of operations research (cooperative game theory, decision under risk and uncertainty, combinatorial optimization) under different names (TU-game, capacity, nonadditive measure, pseudo-Boolean function, etc.). Remarkable families of set functions form polyhedra, e.g., the polytope of capacities, the polytope of p-additive capacities, the cone of supermodular games, etc. Also, the core of a set function, defined as the set of additive set functions dominating that set function, is a polyhedron which is of fundamental importance in game theory, decision-making and combinatorial optimization. This survey paper gives an overview of these notions and studies all these polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In general, normalization is not required. We assume it throughout this paper for convenience.

  2. As far as possible, we stick to these notations: \(\xi \) for set functions, v for games and \(\mu \) for capacities.

References

  • Bilbao JM, Lebrón E, Jiménez N (1999) The core of games on convex geometries. Eur J Oper Res 119:365–372

    Article  Google Scholar 

  • Bilbao JM (2000) Cooperative games on combinatorial structures. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Bilbao JM (2003) Cooperative games under augmenting systems. SIAM J Discrete Math 17:122–133

    Article  Google Scholar 

  • Birkhoff G (1933) On the combination of subalgebras. Proc Camb Philos Soc 29:441–464

    Article  Google Scholar 

  • Bondareva O (1963) Some applications of linear programming to the theory of cooperative games. Probl Kibern 10:119–139 (in Russian)

    Google Scholar 

  • Choquet G (1953) Theory of capacities. Ann Inst Fourier 5:131–295

    Article  Google Scholar 

  • Crama Y, Hammer P (2011) Boolean functions. Number 142 in encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38:325–339

    Article  Google Scholar 

  • Denneberg D (1994) Non-additive measure and integral. Kluwer Academic, Boston

    Book  Google Scholar 

  • Derks J, Haller H, Peters H (2000) The selectope for cooperative games. Int J Game Theory 29:23–38

    Article  Google Scholar 

  • Derks J, Gilles R (1995) Hierarchical organization structures and constraints on coalition formation. Int J Game Theory 24:147–163

    Article  Google Scholar 

  • Derks J, Kuipers J (2002) On the number of extreme points of the core of a transferable utility game. In: Borm P, Peters H (eds) Chapters in game theory (in honor of Stef Tijs). Kluwer Academic, Boston, pp 83–97

    Google Scholar 

  • Derks JJM, Reijnierse H (1998) On the core of a collection of coalitions. Int J Game Theory 27:451–459

    Article  Google Scholar 

  • Edmonds J (1970) Submodular functions, matroids, and certain polyhedra. In: Guy R, Hanani H, Sauer N, Schönheim J (eds) Proceedings of the Calgary international conference on combinatorial structures and their applications, pp 66–87

  • Faigle U (1989) Cores of games with restricted cooperation. ZOR Methods Models Oper Res 33:405–422

    Article  Google Scholar 

  • Faigle U, Grabisch M, Jiménez-Losada A, Ordóñez M (2016) Games on concepts lattices: Shapley value and the core. Discrete Appl Math 198:29–47

    Article  Google Scholar 

  • Faigle U, Kern W (1992) The Shapley value for cooperative games under precedence constraints. Int J Game Theory 21:249–266

    Article  Google Scholar 

  • Fujishige S (2005) Submodular functions and optimization, vol 58. Annals of discrete mathematics, 2nd edn. Elsevier, Amsterdam

  • Fujishige S, Tomizawa N (1983) A note on submodular functions on distributive lattices. J Oper Res Soc Jpn 26:309–318

    Google Scholar 

  • Gillies D (1953) Some theorems on \(n\)-person games. PhD thesis, Princeton University

  • Gonzalez S, Grabisch M (2015) Preserving coalitional rationality for non-balanced games. Int J Game Theory 44:733–760

    Article  Google Scholar 

  • Grabisch M (2011) Ensuring the boundedness of the core of games with restricted cooperation. Ann Oper Res 191:137–154

    Article  Google Scholar 

  • Grabisch M (2013) The core of games on ordered structures and graphs. Ann Oper Res 204:33–64. doi:10.1007/s10479-012-1265-4

    Article  Google Scholar 

  • Grabisch M (2016) Set functions, games and capacities in decision making. Theory and decision library C, vol 46. Springer, Berlin

    Google Scholar 

  • Grabisch M, Labreuche Ch (2003) Capacities on lattices and \(k\)-ary capacities. In: 3d international conference of the european society for fuzzy logic and technology (EUSFLAT 2003), pp 304–307, Zittau

  • Grabisch M, Labreuche Ch (2016) On the decomposition of generalized additive independence models. arXiv:1601.05978

  • Grabisch M, Li T (2011) On the set of imputations induced by the \(k\)-additive core. Eur J Oper Res 214:697–702

    Article  Google Scholar 

  • Grabisch M, Miranda P (2008) On the vertices of the \(k\)-additive core. Discrete Math 308:5204–5217. doi:10.1016/j.disc.2007.09.042

    Article  Google Scholar 

  • Grabisch M, Miranda P (2015) Exact bounds of the Möbius inverse of monotone set functions. Discrete Appl Math 186:7–12

    Article  Google Scholar 

  • Grabisch M, Sudhölter P (2012) The bounded core for games with precedence constraints. Ann Oper Res 201:251–264. doi:10.1007/s10479-012-1228-9

    Article  Google Scholar 

  • Grabisch M, Sudhölter P (2014) On the restricted cores and the bounded core of games on distributive lattices. Eur J Oper Res 235:709–717. doi:10.1016/j.ejor.2013.10.027

    Article  Google Scholar 

  • Hammer PL, Rudeanu S (1968) Boolean methods in operations research and related areas. Springer, Berlin

    Book  Google Scholar 

  • Harsanyi JC (1963) A simplified bargaining model for the \(n\)-person cooperative game. Int Econ Rev 4:194–220

    Article  Google Scholar 

  • Hsiao CR, Raghavan TES (1990) Multichoice cooperative games. In: Dutta B (ed) Proceedings of the international conference on game theory and economic applications, New Delhi

  • Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm for LP. J Econ Theory 25:283–286

    Article  Google Scholar 

  • Kuipers J, Vermeulen D, Voorneveld M (2010) A generalization of the Shapley–Ichiishi result. Int J Game Theory 39:585–602

    Article  Google Scholar 

  • Miranda P, Combarro E, Gil P (2006) Extreme points of some families of non-additive measures. Eur J Oper Res 174:1865–1884

    Article  Google Scholar 

  • Miranda P, Grabisch M (2010) \(k\)-balanced games and capacities. Eur J Oper Res 200:465–472

    Article  Google Scholar 

  • Núñez M, Rafels C (1998) On extreme points of the core and reduced games. Ann Oper Res 84:121–133

    Article  Google Scholar 

  • Núñez M, Rafels C (2003) Characterization of the extreme core allocations of the assignment game. Games Econ Behav 44:311–331

    Article  Google Scholar 

  • O’Donnell R (2014) Analysis of Boolean functions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Radojevic D (1998) The logical representation of the discrete Choquet integral. Belg J Oper Res Stat Comput Sci 38:67–89

    Google Scholar 

  • Rosenmüller J, Weidner HG (1974) Extreme convex set functions with finite carrier: general theory. Discrete Math 10:343–382

    Article  Google Scholar 

  • Rota GC (1964) On the foundations of combinatorial theory. I: Theory of Möbius functions. Z Wahrscheinlichkeitstheor Verwandte Geb 2:340–368

    Article  Google Scholar 

  • Schmeidler D (1972) Cores of exact games I. J Math Anal Appl 40:214–225

    Article  Google Scholar 

  • Shapley LS (1967) On balanced sets and cores. Naval Res Log Q 14:453–460

    Article  Google Scholar 

  • Shapley LS (1971) Cores of convex games. Int J Game Theory 1:11–26

    Article  Google Scholar 

  • Stanley R (1986) Two poset polytopes. Discrete Comput Geom 1:9–23

    Article  Google Scholar 

  • Studený M, Kroupa T (2014) Core-based criterion for extreme supermodular functions. arXiv:1410.8395v1

  • Sugeno M (1974) Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology

  • Vassil’ev V (1978) Polynomial cores of cooperative games. Optimizacia 21:5–29 (in Russian)

    Google Scholar 

  • Walley P (1981) Coherent lower (and upper) probabilities. Technical report 22. University of Warvick, Coventry

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Grabisch.

Additional information

This invited paper is discussed in the comments available at doi:10.1007/s11750-016-0418-z, doi:10.1007/s11750-016-0419-y, doi:10.1007/s11750-016-0420-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabisch, M. Remarkable polyhedra related to set functions, games and capacities. TOP 24, 301–326 (2016). https://doi.org/10.1007/s11750-016-0421-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-016-0421-4

Keywords

Mathematics Subject Classification

Navigation