In the present case, performing computerized virtual surgery with CFD simulation could help the surgeon predict the postoperative coronary flow volume and help determine the surgical strategy for coronary aneurysm in supravalvular aortic stenosis.
Coronary abnormality is one of the major complications of supravalvular aortic stenosis in adults [7, 8]. Coronary arteries may be dilated and tortuous because aortic root hypertension causes enhanced intimal thickening and accelerated atherosclerosis [8]. However, because only a few cases have been reported, Yilmaz et al. mentioned that the decision to undertake surgical repair for coronary aneurysms depends on the surgeon’s experience [8]. In the updated American College of Cardiology and American Heart Association guidelines, clinical recommendations for coronary revascularization are not provided [9]. Therefore, it is difficult to plan the surgical strategy in cases of coronary aneurysm with supravalvular aortic stenosis.
In the present case, the coronary flow demand–supply mismatch was a concern due to heavily dilated and tortuous coronary after the release of supravalvular aortic stenosis. Large diameter vessels do not always provide sufficient flow volumes, especially when turbulent flow is expected. Thus, in this particularly rare case, we were not sure which surgical reconstruction methods of coronary artery supply stable blood flow to the myocardium. Moreover, it was difficult to compare the coronary blood volume accurately between CABG and in situ reconstruction, because coronary blood distribution, the inflow blood volumes and perfusion timing are different between these surgical procedures, and the coronary arterial impedance is constantly changing during the cardiac cycle due to ventricular muscular contraction and relaxation. Thus, because various hemodynamic conditions are different, it is not easy to compare the coronary flow volume in both surgical procedures. Therefore, we determined the strategy of coronary revascularization by performing virtual surgery with CFD simulation. CFD simulation can help determine the blood flow pattern in small vessels, such as coronary arteries, because of high temporal and spatial resolution. Furthermore, in the present case, to simulate the blood flow that would be as similar as possible to the actual blood flow, we used well-validated outlet boundary conditions that represented physiological phenomena including peripheral reflection, vascular inertance, autonomous regulation, and coronary perfusion capacities [10]. As a result, we could predict that in situ Carrel patch coronary reconstruction would be superior to CABG in terms of the postoperative volume of left coronary flow supply. Thus, preoperative computerized virtual surgery with reliable prediction of postoperative hemodynamics is advantageous for the determination of surgical procedures, especially in highly invasive surgical cases.
The major limitation of this report is that we could not include the postoperative change in physiological parameters in our CFD calculation; for example, in the present case, reduced myocardial volume due to reverse remodeling after the reduction of LV afterload. Furthermore, it is impossible to evaluate the material property of the vessel wall with the present technique. However, virtual surgery with CFD simulation is the only method to compare the postoperative coronary flow between CABG and in situ reconstruction; as a result, we believe that CFD simulation was useful to determine the appropriate strategy of coronary revascularization in the present case.