Skip to main content
Log in

Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intrinsic flow instability has recently been reported in the blood flow pathways of the surgically created total-cavopulmonary connection. Besides its contribution to the hydrodynamic power loss and hepatic blood mixing, this flow unsteadiness causes enormous challenges in its computational fluid dynamics (CFD) modeling. This paper investigates the applicability of hybrid unstructured meshing and solver options of a commercially available CFD package (FLUENT, ANSYS Inc., NH) to model such complex flows. Two patient-specific anatomies with radically different transient flow dynamics are studied both numerically and experimentally (via unsteady particle image velocimetry and flow visualization). A new unstructured hybrid mesh layout consisting of an internal core of hexahedral elements surrounded by transition layers of tetrahedral elements is employed to mesh the flow domain. The numerical simulations are carried out using the parallelized second-order accurate upwind scheme of FLUENT. The numerical validation is conducted in two stages: first, by comparing the overall flow structures and velocity magnitudes of the numerical and experimental flow fields, and then by comparing the spectral content at different points in the connection. The numerical approach showed good quantitative agreement with experiment, and total simulation time was well within a clinically relevant time-scale of our surgical planning application. It also further establishes the ability to conduct accurate numerical simulations using hybrid unstructured meshes, a format that is attractive if one ever wants to pursue automated flow analysis in a large number of complex (patient-specific) geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Baran, O. U. Control methodologies in unstructured hexahedral grid generation, PhD Thesis, Vrije Universteit Brussel, November 2005

  2. Barton I. E. 1998 Comparison of simple- and piso-type algorithms for transient flows. Int. J. Numer. Methods Fluids 26:459–483

    Article  CAS  Google Scholar 

  3. Bathe M., K. D. Kamm 1999 A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J. Biomech. Eng. 121(4):361–369

    PubMed  CAS  Google Scholar 

  4. Cebral J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, A. F. Frangi 2005 Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging. 24(4):457–467

    Article  PubMed  Google Scholar 

  5. Cebral J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, C. M. Putman 2005 Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26(10):2550–2559

    PubMed  Google Scholar 

  6. Dasi, L., K. Pekkan, K. Whitehead, M. Fogel, and A. P. Yoganathan. Hepatic blood flow distribution in the total cavopulmonary connection: patient-specific anatomical models. In: Proceedings of the ASME 2007 Summer Bioengineering Conference (SBC2007), Keystone Resort & Conference Center, Keystone, Colorado, June 20–24, 2007

  7. DeGroff C., B. Birnbaum, R. Shandas, W. Orlando, J. Hertzberg 2005 Computational simulations of the total cavo-pulmonary connection: insights in optimizing numerical solutions. Med. Eng. Phys. 27(2):135–146

    Article  PubMed  Google Scholar 

  8. Di Martino E. S., G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli, A. Redaelli 2001 Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23(9):647–655

    Article  PubMed  CAS  Google Scholar 

  9. Dong S., G. M. Karniadakis, N. T. Karonis 2005 Cross-site computations on the Tera-Grid Comput. Sci. Eng. 7(5):14–23

    Article  Google Scholar 

  10. Ensley A. E., P. Lynch, G. P. Chatzimavroudis, C. Lucas, S. Sharma, A. P. Yoganathan 1999 Toward designing the optimal total cavopulmonary connection: an in vitro study. Ann. Thorac. Surg. 68:1384–1390

    Article  PubMed  CAS  Google Scholar 

  11. Figueroa A. C., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, C. A. Taylor 2006 A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706

    Article  Google Scholar 

  12. Fischer, P., F. Loth, S.-W. Lee, D. Smith, H. Tufo, and H. Bassiouny. Parallel simulation of high Reynolds number vascular flows. In: Proc. of Parallel CFD, 2005

  13. Freitas C. J. 1995 Perspective: selected benchmarks from commercial CFD codes. J. Fluids Eng. 117(2):208–218

    Google Scholar 

  14. Hunter K. S., J. Craig, C. J. Lanning, S. Y. J. Chen, Y Zhang, R. Garg, D. D. Ivy, R. Shandas 2006 Simulations of congenital septal defect closure and reactivity testing in patient specific models of the pediatric pulmonary vasculature: a 3D numerical study with fluid-structure interaction. J. Biomech. Eng. 128(4):564–572

    Article  PubMed  Google Scholar 

  15. Khunatorn K., B. Shandas, C. DeGroff, S. Mahalingham 2003 Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions. Ann. Biomed. Eng. 31(7):810–822

    Article  PubMed  Google Scholar 

  16. de Leval M. R. 2005 The Fontan circulation: a challenge to William Harvey? Nat. Clin. Pract. Cardiovasc. Med. 2(4):202–208

    Article  PubMed  Google Scholar 

  17. Masters J. C., M. Ketner, M. S. Bleiweis, M. Mill, A. Yoganathan, C. L. Lucas 2004 The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. J. Biomech. Eng. 126(6):709–713

    Article  PubMed  CAS  Google Scholar 

  18. Masters, J. C., M. Ketner, M. Mill, A. P. Yoganathan, and C. L. Lucas. Assessing the effect of compliance on the efficacy of the total cavopulmonary connection. J. Biomech. Eng. 2006 (in press)

  19. Migliavacca F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, E. L. Bove 2006 Multiscale modelling in biofluidynamics: application to reconstructive pediatric cardiac surgery. J Biomech. 39(6):1010–1020

    Article  PubMed  Google Scholar 

  20. Moyle K. R., L. Antiga, D. A. Steinman 2006 Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3):371–379

    Article  PubMed  Google Scholar 

  21. Pekkan K., D. Frakes, D. Zélicourt, C. W. Lucas, W. J. Parks, A. P. Yoganathan 2005 Coupling pediatric ventricle assist devices to the Fontan circulation; simulations with a lumped parameter model. ASAIO J. 51(5):618–628

    Article  PubMed  Google Scholar 

  22. Pekkan K., H. Kitajima, J. Forbess, M. Fogel, K. Kanter, J. M. Parks, S. Sharma, A. P. Yoganathan 2005 Total cavopulmonary connection flow with functional left pulmonary artery stenosis—fenestration and angioplasty in vitro. Circulation 112(21):3264–3271

    Article  PubMed  Google Scholar 

  23. Pekkan K., D. de Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, A. P. Yoganathan 2005 Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study. Ann. Biomed. Eng. 33(3):284–300

    Article  PubMed  Google Scholar 

  24. Perot B. 2000 Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159(1):58–59

    Article  Google Scholar 

  25. Tang B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, C. A. Taylor 2006 Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart. Circ. Physiol. 291(2):H668–H676

    Article  PubMed  CAS  Google Scholar 

  26. Tezduyar. T. E., S. Sathe, T. Cragin, B. Nanna, B. S. Conklin, J. Pusewang, and M. Schwaab. Modelling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int. J. Numer. Meth. Fluids 54(6–8):901–922, 2007

    Article  Google Scholar 

  27. Whitehead, K. K., K. Pekkan, R. Doddasomayajula, H. D. Kitajima, K. S. Sundareswaran, A. P. Yoganathan, and M. A. Fogel. Extracardiac Fontan demonstrates lower power loss compared to intracardiac Fontan—a computational fluid dynamics study. Presented at the Annual Scientific Sessions of the American College of Cardiology, March 24–27, 2007

  28. Yerneni, V., K. Pekkan, P. Nourparvar, D. de Zélicourt, J. Rossignac, L. Dasi, F. Sotirpoulos, and A. P. Yoganathan. Comparative CFD study of hemi-Fontan and Glenn anastomosis: idealized and anatomical models with free-form deformed variations. In: Proceedings of ASME-Bio2006 Summer Bioengineering Conference, Florida, June 21–25, 2006

  29. Yue X., F. N. Hwang, R. Shandas, X. C. Cai 2004 Simulation of branching blood flows on parallel computers. Biomed. Sci. Instrum. 40:325–330

    PubMed  Google Scholar 

  30. Zhang X., D. Schimdt, B. Perot 2002 Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. J. Comput. Phys. 175(2):764–791

    Article  CAS  Google Scholar 

  31. de Zélicourt D., K. Pekkan, H. Kitajima, D. Frakes, A. P. Yoganathan 2005 Single-step stereolithography of complex anatomical models for optical flow measurements. J. Biomech. Eng. 127(1):204–207

    Article  PubMed  Google Scholar 

  32. de Zélicourt D., K. Pekkan, W. J. Parks, K. Kanter, M. Fogel, A. P. Yoganathan 2006 Flow study of an extra-cardiac connection with persistent left superior vena cava. J. Thorac. Cardiovasc. Surg. 31(4):785–791

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Heart, Lung, and Blood Institute, HL67622. We also acknowledge Dr. Dave Frakes and Mr. Hiroumi Kitajima for processing the patient MRI datasets. The glycerin for the experimental work was provided by P&G, Cincinnati, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Pekkan, K., de Zélicourt, D. et al. Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections. Ann Biomed Eng 35, 1840–1856 (2007). https://doi.org/10.1007/s10439-007-9356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9356-0

Keywords

Navigation