Skip to main content
Log in

Lipids of Haliphthoros philippinensis: An oomycetous marine microbe

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Lipids of the marine oomycetous microbe Haliphthoros philippinensis were characterized by chromatographic and spectroscopic techniques. Total lipid content of this organism was relatively low and not very responsive to manipulation of the culture conditions. Neutral lipid comprised 21% of the total lipid and the polar lipids were mainly phosphatidylcholine (44%), phosphatidylethanolamine (15%), and a ceramide-phosphorylethanolamine (19%). Palmitic (16:0) was the primary saturated fatty acid at 25% of the total fatty acids, and arachidonic acid (20:4n-6, ARA) and eicosapentaenoic acid (20:5n-3, EPA) were the major unsaturated fatty acids at 19 and 21%, respectively. Fucosterol was the principal sterol at 59% of the total sterols. The effects of several cultivation variables on growth and EPA production by this species were investigated. Among those tested, glucose and sodium glutamate were the most efficient carbon and nitrogen sources for growth, respectively. When the mycelium was cultivated for 6 d to produce biomass under optimal growth conditions, and then transferred to low temperature for an additional 13 d without glucose, the EPA content reached 31% of the total fatty acids and the yield was 203 mg/L. When the same experiment was performed with glucose supplementation during the low-temperature phase, EPA composed 27% of total fatty acids and yield reached 316 mg/L, or a 285% increase over that from mycelium cultured for 6 d at 24°C, and 56% over that cultured at 16°C for 13 d. ARA production did not respond accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lands, W.E.M., The Fate of Polyunsaturated Fatty Acids, in Health Effects of Polyunsaturated Fatty Acids in Seafoods, edited by A.P. Simopoulos, R.R. Kifer, and R.E. Martin, Academic Press Inc., Orlando, 1986, pp. 319–351.

    Google Scholar 

  2. Simopoulos, A.P., Summary of the NATO Advanced Research Workshop on Dietary Omega-3 and Omega-6 Fatty Acids. Biological Effects and Nutritional Essentialities, J. Nutr. 119:521–528 (1989).

    PubMed  CAS  Google Scholar 

  3. Yongmanitchai, W., and Ward, O.P., Growth and Eicosapentaenoic Acid Production by Phaeodacylum tricorntum in Batch and Continuous Culture Systems, J. Am. Oil Chem. Soc. 69:584–590 (1992).

    CAS  Google Scholar 

  4. Cohen, Z., Production Potential of Eicosapentaenoic Acid by Monodus subterraneous, Ibid.:941–945 (1994).

    Article  CAS  Google Scholar 

  5. Weete, J.D., M. Fuller, M.Q. Huang, and S. Gandhi, Fatty Acids and Sterols of Selected Hypochytriomyces and Chytridiomycetes, Exp. Mycol. 13:183–195 (1992).

    Article  Google Scholar 

  6. Bajpai, P.K., P. Bajpai, and O.P. Ward, Optimization of Culture Conditions for Production of Eicosapentaenoic Acid by Mortierella elongata NRRL 5513, J. Ind. Microbiol. 9:11–18 (1992).

    Article  CAS  Google Scholar 

  7. Yamada, H., S. Shimizu, and Y. Shinmen, Production of Arachidonic Acid by Mortierella elongata IS-5, Agric. Biol. Chem. 51:785–790 (1987).

    CAS  Google Scholar 

  8. Shimizu, S., A. Kawashima, Y. Shinmen, K. Akimoto, and H. Yamada, Production of Eicosapentaenoic Acid by Mortierella Fungi, J. Am. Oil Chem. Soc. 65:1455–1459 (1988).

    CAS  Google Scholar 

  9. Gellerman, T.L., and H. Schlenk, Methyl-Directed Desaturation of Arachidonic to Eicosapentaenoic Acid in the Fungus, Saprolegnia parasitica, Biochim. Biophys. Acta 573:23–30 (1979).

    PubMed  CAS  Google Scholar 

  10. Gandhi, S.R., and J.D. Weete, Production of the Polyunsaturated Fatty Acids Arachidonic Acid and Eicosapentaenoic Acid by the Fungus Pythium ultimum, J. Gen. Microbiol. 137:1825–1830 (1991).

    PubMed  CAS  Google Scholar 

  11. O’Brien, D.J., M.J. Kurantz, and R. Kwoczak, Production of Eicosapentaenoic Acid by the Filamentous Fungus Pythium irregulare, Appl. Microbiol. Biotechnol. 40:211–214 (1993).

    Article  CAS  Google Scholar 

  12. Shirasaka, N., and S. Shimizu, Production of Eicosapentaenoic Acid by Saprolegnia 28YTF-1, J. Am. Oil Chem. Soc. 72:1545–1549 (1995).

    Article  CAS  Google Scholar 

  13. Bajpai, P.K., P. Bajpai, and O.P. Ward, Optimization of Production of Docosahexaenoic Acid (DHA) by Thraustochytrium aureum ATCC 34303, Ibid.:509–513 (1991).

    CAS  Google Scholar 

  14. Bajpai, P., P.K. Bajpai, and O.P. Ward, Production of Docosahexaenoic Acid by Thraustochytrium aureum, Appl. Microbiol. Biotechnol. 35:706–710 (1991).

    Article  CAS  Google Scholar 

  15. Kendrick, A., and C. Ratledge, Lipids of Selected Molds Grown for Production of n-3 and n-6 Polyunsaturated Fatty Acids, Lipids 27:15–20 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. Weete, J.D., H. Kim, S.R. Gandhi, Y. Wang, and R. Dute, Lipids and Ultrastructure of Thraustochytrium sp. ATCC 26185, Ibid.:839–845 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Yoguchi, T., S. Tanaka, T. Yokochi, T. Nakahara, and T. Higashihara, Production of High Yields of Docosahexaenoic Acid by Schizochytrium Strain SR21, J. Am. Oil Chem. Soc. 74:1431–1434 (1997).

    Google Scholar 

  18. Grima, E.M., J.A.S. Perez, J.L.G. Sanchez, F.G. Camacho, and D.L. Alonso, EPA from Isochrysis galbana. Growth Conditions and Productivity, Proc. Biochem. 27:299–305 (1992).

    Article  Google Scholar 

  19. Cohen, Z., The Production Potential of Eicosapentaenoic Acid and Arachidonic Acid by the Red Alga Porphyridium cruentum, J. Am. Oil Chem. Soc. 67:916–920 (1990).

    Article  CAS  Google Scholar 

  20. Ward, O.P., Microbial production of long-chain PUFA, INFORM 6:683–688 (1995).

    Google Scholar 

  21. Vogel, H.J., Distribution of Lysine Pathways Among Fungi: Evolutionary Implications, Amer. Naturalist 98:435–445 (1984).

    Google Scholar 

  22. Bligh, E.G., and W.J. Dyer, A Rapid Method for Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37:911–917 (1959).

    PubMed  CAS  Google Scholar 

  23. Kates, M., Techniques of Lipidology, Part 2, Elsevier, Amsterdam, 1986, Vol. 3, pp. 106–107.

    Google Scholar 

  24. Siejo, L., T.E. Merchant, L.T.M. Van der Ven, B.D. Minsky, and T. Glonek, Meningioma Phospholipid Profiles Measured by 31P-NMR Spectroscopy, Lipids 31:357–369 (1994).

    Google Scholar 

  25. Meneses, P., and T. Glonek, High Resolution 31P-NMR of Extracted Phospholipids, J. Lipid Res. 29:679–689 (1998).

    Google Scholar 

  26. Moreau, R.A., D.H. Young, P.O. Danis, M.J. Powell, C. Quinn, and K. Beshah, Identification of Ceramide-Phosphorylethanolamine and Other Lipids in Oomycete Fungi: Pythium ultimum, Phytophthora infestans, and Phytophthora capsici, Lipids 33:307–317 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. Brooks, C.J.W., E.C. Horning, and J.S. Young, Characterization of Sterols by Gas Chromatography-Mass Spectrometry of the Trimethylsilyl Ethers, Lipids. 3:391–402 (1968).

    Article  CAS  Google Scholar 

  28. McCorkindale, N.J., S.A. Hutchinson, B.A. Pursey, W.T. Scott, and R. Wheeler, A Comparison of the Types of Sterol Found in Species of the Saprolegniales and Leptomitales with Those Found in Some Other Phycomycetes, Phytochemistry 8:861–867 (1969).

    Article  CAS  Google Scholar 

  29. Warner, S.A., G.W. Savocool, and A.J. Domnas, Sterols of Selected Species of Oomycetes and Hyphochytridiomycetes, Mycologia 75:285–291 (1983).

    Article  CAS  Google Scholar 

  30. Shimizu, S., Y. Shinmen, K. Akimoto, and H. Yamada, Fungal Mycelia as a Novel Source of Eicosapentaenoic Acid, Biochem. Biophys. Res. Commun. 150:335–341 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. Latge, J.P., and C.D. Bievre, Lipid Composition of Entomophthora obscura Hall & Dunn, J. Gen. Microbiol. 121:151–158 (1980).

    CAS  Google Scholar 

  32. Jareonkitmongkoi, S., S. Shimizu, and H. Yamada, Production of an Eicosapentaenoic Acid-Containing Oil by a Δ12 Desaturase-Defective Mutant of Mortierella alpina IS-4, J. Am. Oil Chem. Soc. 69:119–123 (1993).

    Article  Google Scholar 

  33. Shimizu, S., K. Akimoto, H. Kawashima, Y. Shinmen, and H. Yamada, Microbial Conversion of an Oil Containing Alpha-Linolenic Acid to an Oil Containing Eicosapentaenoic Acid, J. Am. Oil Chem. Soc. 66:237–241 (1989).

    Article  CAS  Google Scholar 

  34. Lindberg, A.M., and G. Molen, Effect of Temperature and Glucose Supply on the Production of Polyunsaturated Fatty Acids by the Fungus Mortierella alpina CBS 343.66 in Fermentor Cultures, Appl. Microbiol. Biotechnol. 39:450–455 (1993).

    Article  CAS  Google Scholar 

  35. Yazawa, K., K. Araki, N. Okazaki, K. Watanabe, C. Ishikawa, A. Inoue, N. Numao, and K. Kondo, Production of Eicosapentaenoic Acid by Marine Bacteria, J. Biochem. 103:5–7 (1988).

    PubMed  CAS  Google Scholar 

  36. Akimoto, M., T. Ishii, K. Yamagaki, K. Ohtaguchi, K. Koide, and K. Yazawa, Production of Eicosapentaenoic Acid by a Bacterium Isolated from Mackerel Intestines, J. Am. Oil Chem. Soc. 67:911–915 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Weete.

About this article

Cite this article

Kim, H., Gandhi, S.R., Moreau, R.A. et al. Lipids of Haliphthoros philippinensis: An oomycetous marine microbe. J Amer Oil Chem Soc 75, 1657–1665 (1998). https://doi.org/10.1007/s11746-998-0108-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0108-6

Key Words

Navigation