Skip to main content
Log in

Identification of ceramide-phosphorylethanolamine in Oomycete plant pathogens: Pythium ultimum, phytophthora infestans, and Phytophthora capsici

  • Published:
Lipids

Abstract

Cellular lipids were extracted from three species of Oomycete plant pathogens (Pythium ultimum, Phytophthora infestans, and Ph. capsici) and analyzed via normal-phase high-performance liquid chromatography with flame-ionization detection. The most abundant polar lipids in each of the three species were the polar membrane lipids, phosphatidylethanolamine (PE), phosphatidylcholine, and a phosphosphingolipid that eluted soon after PE. Structural analysis via mass spectrometry and nuclear magnetic resonance spectrometry revealed that the phosphosphingolipid was ceramide phosphorylethanolamine (Cer-PE). The most abundant molecular species of Cer-PE in P. ultimum had a molecular weight of 670.5, contained an unusual 19-carbon branched triunsaturated sphingoid (C19-Δ4, 8, 10, 9-methyl long-chain base) and palmitic acid as the amidelinked fatty acid. The most abundant molecular species of Cer-PE in Ph. infestans has a molecular weight of 714.5, contained a common 16-carbon 1,3 di-OH sphingoid, and erucic (cis 13-docosenoic, C22-Δ13) acid as the amide-linked fatty acid. The Cer-PE in Ph. capsici comprised a mixture of each of the two molecular species found in P. ultimum and Ph. infestans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

collisionally acttivated dissociation

CAEP:

ceramide aminoethylphosphonate

Cer-PE:

ceramide phosphorylethanolamine

Cer-PI:

eeramide phosphorylinositol

2D:

two-dimensional

FAB:

fast atom bombardment

FID:

flame-ionization detector

GC/MS:

gas chromatography/mass spectrometry

HPLC:

high-performance liquid chromatography

LC/MS:

liquid chromatography/MS

NMR:

nuclear magnetic resonance

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

References

  1. Alexopoulos, C.J., Mims, C.W., and Blackwell, M. (1996) Introductory Mycology, p. 868, John Wiley & Sons, New York.

    Google Scholar 

  2. Bartnicki-Garcia, S. (1968) Cell Wall Chemistry, Morphogenesis, and Taxonomy of Fungi, Annu. Rev. Bacteriol. 22, 87–108.

    CAS  Google Scholar 

  3. Hendrix, J.W. (1970) Sterols in Growth and Reproduction of Fungi, Annu. Rev. Phytopathol. 8, 111–130.

    Article  CAS  Google Scholar 

  4. Weete, J.D. (1989) Structure and Function of Sterols in Fungi, Adv. Lipid Res. 23, 115–167.

    CAS  Google Scholar 

  5. Wassef, M.K., and Hendrix, J.W. (1977) Ceramide Aminoethylphosphonate in the Fungus Pythium prolatum, Biochim. Biophys. Acta 486, 172–178.

    CAS  Google Scholar 

  6. Creamer, J.R., and Bostock, R.M. (1986) Characterization and Biological Activity of Phytophthora infestans Phospholipids in the Hypersensitive Response of Potato Tuber, Physiol. Mol. Plant Pathol. 28, 215–225.

    CAS  Google Scholar 

  7. Moreau, R.A. (1987) The Involvement of Membrane-Degrading Enzymes During Infection of Potato Leaves by Phytophthora infestans, in Ecology and Metabolism of Plant Lipids (Fuller, G., and Nes, W.D., eds.) Vol. 325, pp. 343–354, American Chemical Society Symposium Series, Washington, D.C.

  8. Berry, A.M., Harriott, O.T., Moreau, R.A., Osman, S.F., Benson, D.R., and Jones, A.D. (1993) Hopanoid Lipids Compose the Frankia Vesicle Envelope, Presumptive Barrier of Oxygen to Nitrogenase, Proc. Natl. Acad. Sci. USA 90, 6091–6094.

    Article  PubMed  CAS  Google Scholar 

  9. Moreau, R.A., Powell, M.J., Osman, S.F., Whitaker, B.D., Fett, W.F., Roth, L., and O'Brien, D.J. (1995) Analysis of Intact Hopanoids and Other Lipids from the Bacterium Zymomonas mobilis by High-Performance Liquid Chromatography, Anal. Biochem. 224, 293–301.

    Article  PubMed  CAS  Google Scholar 

  10. Erwin, D.C., and Katznelson, K. (1961) Studies on the Nutrition of Phytophthora cryptogea, Can. J. Microbiol. 7, 15–25.

    Article  PubMed  CAS  Google Scholar 

  11. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  12. Christie, W.W. (1987) High-Performance Liquid Chromatography and Lipids; A Practical Guide, pp. 193–198, Pergamon Press, Oxford.

    Google Scholar 

  13. Murphy, R.C., and Harrison, K.A. (1994) Fast Atom Bombardment Mass Spectrometry of Phospholipids, Mass Spectrom. Rev. 13, 57–75.

    Article  CAS  Google Scholar 

  14. Pivot, V., Bruneteau, M., Mas, P., Bompeix, G., and Michel, G. (1994) Isolation, Characterization and Biological Activity of Inositol Sphingophospholipids from Phytophthora capsici, Lipids 29, 21–25.

    CAS  Google Scholar 

  15. Ernst, R.R., Bodenhausen, G., and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford Science Publications, Oxford.

    Google Scholar 

  16. Bowman, R.D., and Mumma, R.O. (1967) The Lipids of Pythium ultimum, Biochim. Biophys. Acta. 144, 501–510.

    PubMed  CAS  Google Scholar 

  17. Kerwin, J.L., and Duddles, N.D. (1989) Reassessment of the Role of Phospholipids in Sexual Reproduction by Sterol-Auxotrophic Fungi, J. Bacteriol. 171, 3831–3839.

    PubMed  CAS  Google Scholar 

  18. Gandhi, S.R., and Weete, J.D. (1991) Production of the Polyunsaturated Fatty Acids Arachidonic Acid and Eicosapentaenoic Acid by the Fungus Pythium ultimum, J. Gen. Microbiol. 137, 1825–1830.

    PubMed  CAS  Google Scholar 

  19. Lhomme, O., Bruneteau, M., Costello, C.E., Mas, P., Molot, P.-M., Dell, A., Tiller, P.R., and Michel, G. (1990) Structural Investigations and Biological Activity of Inositol Sphingophospholipids from Phytophthora capsici, Eur. J. Biochem. 191, 203–209.

    Article  PubMed  CAS  Google Scholar 

  20. Pivot, V., Bruneteau, M., Mas, P., Molot, P.-M., and Michel, G. (1991) Isolement, Identification et Activite Biologique de Phospholipids Isoles du Mycelium De Phytophthora capsici, C.R. Acad. Sci. Paris, t. 313, 259–264.

    CAS  Google Scholar 

  21. Bruneteau, M., Fournol, F., Gandon, C., Becchi, M., and Pivot, V. (1997) Isolation and Characterization of Inositol Sphingophospholipids from Phytophthora parasitica Dastur, Lipids 32, 359–363.

    PubMed  CAS  Google Scholar 

  22. Lester, R.L., and Dickson, R.C. (1993) Sphingolipids with Inositol Phosphate-containing Head Groups, Adv. Lipid Res. 26, 253–274.

    PubMed  CAS  Google Scholar 

  23. Lester, R.L., Wells, G.B., Oxford, G., and Dickson, R.C. (1993) Mutant Strains of Saccharomyces cerevisiae Lacking Sphingolipids Synthesize Novel Inositol Glycerophospholipids That Mimic Sphingolipid Structures, J. Biol. Chem. 268, 845–856.

    PubMed  CAS  Google Scholar 

  24. Itaska, O., Hori, T., Sasahara, K., Wakabayashi, Y., Takahashi, F., and Rhee, H.-I. (1984) Analysis of Phospho- and Phosphonosphingolipids by High-Performance Liquid Chromatography, J. Biochem. 95, 1671–1675.

    Google Scholar 

  25. Kato, M., Muto, Y., Tanakabandoh, K., Watanabe, K., and Ueno, K. (1995) Sphingolipid Composition in Bacteroides Species, Anaerobe 1, 135–139.

    Article  PubMed  CAS  Google Scholar 

  26. Irie, A., Kubo, H., and Hoshi, M. (1990) Glucosylceramide Having a Novel Tri-Unsaturated Long-Chain Base from the Spermatozoa of the Starfish, Asterias amurensis, J. Biochem. 107, 587–586.

    Google Scholar 

  27. Jin, W., Rinehart, K.L., and Jares-Erijam, E.A. (1994) Ophidiacerebrosides: Cytotoxic Glycosphingolipids Containing a Novel Sphingosine from a Sea Star, J. Org. Chem. 59, 144–147.

    Article  CAS  Google Scholar 

  28. Kawai, G., and Ikeda, Y. (1985) Structure of Biologically Active and Inactive Cerebrosides Prepared from Schizophyllum commune, J. Lipid Res. 26, 338–343.

    PubMed  CAS  Google Scholar 

  29. Kawai, G. (1989) Molecular Species of Cerebrosides in Fruiting Bodies of Lentinus edodes and Their Biological Activity, Biochim. Biophys. Acta. 1001, 185–190.

    PubMed  CAS  Google Scholar 

  30. Patton, J.L., and Lester, R.L. (1991) The Phosphoinositol Sphingolipids of Saccharomyces cerevisiae Are Highly Localized in the Plama Membrane, J. Bact. 173, 3101–3108.

    PubMed  CAS  Google Scholar 

  31. Lynch, D.V., and Steponkus, P.L. (1987) Plasma Membrane Lipid Alterations Associated with Cold Acclimation of Winter Rye Seedlings (Secale cereale L. Cv. Puma), Plant Physiol. 83, 761–767.

    Article  PubMed  CAS  Google Scholar 

  32. Hannun, Y.A., and Bell, R.M. (1989) Functions of Sphingolipids and Sphingolipid Breakdown Products in Cellular Regulation, Science 243, 500–507.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Moreau.

About this article

Cite this article

Moreau, R.A., Young, D.H., Danis, P.O. et al. Identification of ceramide-phosphorylethanolamine in Oomycete plant pathogens: Pythium ultimum, phytophthora infestans, and Phytophthora capsici . Lipids 33, 307–317 (1998). https://doi.org/10.1007/s11745-998-0210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0210-1

Keywords

Navigation