Skip to main content
Log in

Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

In the present study, grape seed samples (Alicante Bouschet, Cabernet Franc, Cinsault, Merlot, Shiraz) were treated with 1.0, 3.0, 5.0, and 7.0 kGy of gamma radiation. Effect of irradiation dose on free fatty acids (FFA), peroxide value (PV), sterol, fatty acid composition, phenolic content, antioxidant activity of the seed oils, and chemical (dry matter, fat, ash, total sugar, invert sugar) changes of grape seeds were determined. Regarding fatty acid composition, oleic acid (C18:1) and linoleic acid (C18:2) levels decreased. β-sitosterol content with a highest percentage among sterols in grape seed oils decreased due to gamma irradiation. Generally gamma irradiation increased free fatty acids and peroxide value of the oils; however, phenolic content and antioxidant capacity of grape seeds decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akın A, Altındisli A (2010) Determination of fatty acid composition and total phenolic contents of grape seed oils of Emir, Gök grape and Kara Dimrit varieties. Acad Food J 8(6):19–23

    Google Scholar 

  2. Bail S, Stuebiger G, Krist S, Unterweger H, Buchbauer G (2008) Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem 108(3):1122–1132

    Article  CAS  Google Scholar 

  3. FAOSTAD Database. http://www.fao.org. Accessed June 2016

  4. Göktürk Baydar N, Özkan G, Sema Çetin E (2007) Characterization of grape seed and pomace oil extracts. Grasas Aceites 58:29–33

    Google Scholar 

  5. Baydar NG, Akkurt M (2001) Oil content and oil quality properties of some grape seeds. Turki J Agric For 25:163–168

    Google Scholar 

  6. Fernandes L, Casal S, Cruz R, Pereira JA, Ramalhosa E (2013) Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int 50:161–166

    Article  CAS  Google Scholar 

  7. Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212

    Article  CAS  Google Scholar 

  8. Da Porto C, Porretto E, Decorti D (2013) Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason Sonochem 20:1076–1080

    Article  Google Scholar 

  9. Cao X, Ito Y (2003) Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. J Chromatogr A 1021:117–124

    Article  CAS  Google Scholar 

  10. Kirkin C, Mitrevski B, Gunes G, Marriott PJ (2014) Combined effects of gamma-irradiation and modified atmosphere packaging on quality of some spices. Food Chem 154:255–261

    Article  CAS  Google Scholar 

  11. Hocaoǧlu A, Sükrü Demirci A, Gümüs T, Demirci M (2012) Effects of gamma irradiation on chemical, microbial quality and shelf life of shrimp. Radiat Phys Chem 81:1923–1929

    Article  Google Scholar 

  12. Arjeh E, Barzegar M, Ali Sahari M (2015) Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice. Radiat Phys Chem 114:18–24

    Article  CAS  Google Scholar 

  13. Al-Bachir M (2015) Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.). Food Chem 167:175–179

    Article  CAS  Google Scholar 

  14. Lacroix M, Smoragiewicz W, Jobin M, Latreille B, Krzystyniak K (2002) The effect of irradiation of fresh pork loins on the protein quality and microbiological changes in aerobically—or vacuum-packaged. Radiat Phys Chem 63:317–322

    Article  CAS  Google Scholar 

  15. Trindade RA, Mancini-Filho J, Villavicencio ALCH (2010) Natural antioxidants protecting irradiated beef burgers from lipid oxidation. LWT Food Sci Technol 43:98–104

    Article  CAS  Google Scholar 

  16. Choi YS, Kim HW, Hwang KE, Song DH, Jeong TJ, Seo KW, Kim YB, Kim CJ (2015) Effects of gamma irradiation on physicochemical properties of heat-induced gel prepared with chicken salt-soluble proteins. Radiat Phys Chem 106:16–20

    Article  CAS  Google Scholar 

  17. Taipina MS, Garbelotti ML, Lamardo LCA, Santos JS, Rodas MAB (2011) The effect of gamma irradiation on the nutrional properties of sunflower whole grain cookies. Procedia Food Sci 1:1992–1996

    Article  CAS  Google Scholar 

  18. Ben Salem I, Fekih S, Sghaier H, Bousselmi M, Saidi M, Landoulsi A, Fattouch S (2013) Effect of ionising radiation on polyphenolic content and antioxidant potential of parathion-treated sage (Salvia officinalis) leaves. Food Chem 141:1398–1405

    Article  CAS  Google Scholar 

  19. Passos CP, Silva RM, Da Silva FA, Coimbra MA, Silva CM (2010) Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil. Effect of the operating conditions upon oil composition and antioxidant capacity. Chem Eng J 160:634–640

    Article  CAS  Google Scholar 

  20. Roberts PB (2014) Food irradiation is safe: half a century of studies. Radiat Phys Chem 105:1–5

    Article  Google Scholar 

  21. Atasever MA, Atasever M (2007) Usage of irradiation for food technology. Atatürk Üniversitesi Vet Bil Derg 3:107–116

    Google Scholar 

  22. Faezeh F, Salome D, Abolfazl D, Reza ZM (2015) Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems. Radiat Phys Chem 106:145–150

    Article  Google Scholar 

  23. Zoumpoulakis P, Sinanoglou VJ, Batrinou A, Strati IF, Miniadis-Meimaroglou S, Sflomos K (2012) A combined methodology to detect γ-irradiated white sesame seeds and evaluate the effects on fat content, physicochemical properties and protein allergenicity. Food Chem 131:713–721

    Article  CAS  Google Scholar 

  24. Gecgel U, Gumus T, Tasan M, Daglioglu O, Arici M (2011) Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios. Radiat Phys Chem 80:578–581

    Article  CAS  Google Scholar 

  25. Al-Bachir M (2004) Effect of gamma irradiation on fungal load, chemical and sensory characteristics of walnuts (Juglans regia L.). J Stored Prod Res 40:355–362

    Article  CAS  Google Scholar 

  26. Gölge E, Ova G (2008) The effects of food irradiation on quality of pine nut kernels. Radiat Phys Chem 77:365–369

    Article  Google Scholar 

  27. Kontominas MG, Mexis SF (2009) Effect of gamma-irradiation on the physicochemical and sensory properties of walnuts (Juglans regia L.). Eur Food Res Technol 228:823–831

    Article  Google Scholar 

  28. Anwar MM, Ali SE, Nasr EH (2015) Improving the nutritional value of canola seed by gamma irradiation. J Radiat Res Appl Sci 8:328–333

    Article  Google Scholar 

  29. Ma Y, Lu X, Liu X, Ma H (2013) Effect of 60Coγ-irradiation doses on nutrients and sensory quality of fresh walnuts during storage. Postharvest Biol Technol 84:36–42

    Article  CAS  Google Scholar 

  30. Ghoreishi M, Rahmani F, Baneh HD (2013) Determination Of fatty acids in some grape cultivars by gas chromatography mass spectrometry. Int Res J Appl Basic Sci 4:1467–1471

    CAS  Google Scholar 

  31. Lutterodt H, Slavin M, Whent M, Turner E, Yu L (2011) Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem 128:391–399

    Article  CAS  Google Scholar 

  32. Al-Bachir M (2015) Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.). Radiat Phys Chem 106:56–60

    Article  CAS  Google Scholar 

  33. Hong SI, Kim JY, Cho SY, Park HJ (2010) The effect of gamma irradiation on oleic acid in methyl oleate and food. Food Chem 121:93–97

    Article  CAS  Google Scholar 

  34. Yılmaz I, Geçgel U (2007) Effects of gamma irradiation on trans fatty acid composition in ground beef. Food Control 18:635–638

    Article  Google Scholar 

  35. Manjaya JG, Suseelan KN, Gopalakrishna T, Pawar SE, Bapat VA (2007) Radiation induced variability of seed storage proteins in soybean [Glycine max (L.) merrill]. Food Chem 100:1324–1327

    Article  CAS  Google Scholar 

  36. Koseki PM, Villavicencio ALCH, Britoa MS, Nahme LC, Sebastiao KI, Rela PR (2002) Effects of irradiation in medicinal and eatable herbs. Radiat Phys Chem 63:681–684

    Article  CAS  Google Scholar 

  37. Fatima Khattak K, James Simpson T (2010) Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root. Radiat Phys Chem 79(4):507–512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Namik Kemal University Research Fund for providing funding for this work (NKUBAP.00.24.AR13.21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Apaydin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apaydin, D., Demirci, A.S. & Gecgel, U. Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. J Am Oil Chem Soc 94, 57–67 (2017). https://doi.org/10.1007/s11746-016-2917-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2917-3

Keywords

Navigation