Skip to main content
Log in

Effect of gamma irradiation on antioxidant potential, isoflavone aglycone and phytochemical content of soybean (Glycine max L. Merrill) cultivar Williams

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of irradiation on phytochemical content of soybean. Soybean seeds were irradiated at different doses of 0, 0.5, 1, and 2 kGy. In followings, the changes in isoflavone aglycone concentrations were analyzed. Also, the antioxidant potential was measured as DPPH free radical-scavenging activity. Genistein and daidzein concentrations, antioxidant activity and total phenolic and flavonoid content of soybean extracts were higher at the radiation dose of 0.5 kGy. Lower doses of irradiation improve concentration and antioxidant activity of soybean isoflavones as well as total flavonoid and phenolic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dixit AK, Bhatnagar D, Kumar V, Rani A, Manjaya JG, Bhatnagar D (2010) Gamma irradiation induced enhancement in isoflavones, total phenol, anthocyanin and antioxidant properties of varying seed coat colored soybean. J Agric Food Chem 58(7):4298–4302. https://doi.org/10.1021/jf904228e

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad A, Hayat I, Arif S, Masud T, Khalid N, Ahmed A (2014) Mechanisms involved in the therapeutic effects of soybean (Glycine Max). Int J Food Prop 17(6):1332–1354. https://doi.org/10.1080/10942912.2012.714828

    Article  CAS  Google Scholar 

  3. Alghamdi SS, Khan MA, El-Harty EH, Ammar MH, Farooq M, Migdadi HM (2018) Comparative phytochemical profiling of different soybean (Glycine max (L.) Merr) genotypes using GC–MS. Saudi J Biol Sci 25(1):15–21. https://doi.org/10.1016/j.sjbs.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  4. Rostagno MA, Villares A, Guillamon E, Garcia-Lafuente A, Martinez JA (2009) Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A 1216(1):2–29. https://doi.org/10.1016/j.chroma.2008.11.035

    Article  CAS  PubMed  Google Scholar 

  5. Kalaiselvan V, Kalaivani M, Vijayakumar A, Sureshkumar K, Venkateskumar K (2010) Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn Rev 4(8):111–117. https://doi.org/10.4103/0973-7847.70900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Araújo MM, Fanaro GB, Villavicencio ALCH (2013) Soybean and isoflavones—from farm to fork. In: El-Shemy HA (ed) Soybean—bio-active compounds. IntechOpen, Rijeka, pp 181–201. https://doi.org/10.5772/52609s

    Chapter  Google Scholar 

  7. Lakshmi MC, Rao LJ, Ravi R, Raghavarao KSMS (2013) Extraction and concentration of isoflavones from soybean (Glycine max). Sep Sci Technol 48(1):166–174. https://doi.org/10.1080/01496395.2012.674601

    Article  CAS  Google Scholar 

  8. Hae LJ, Sik WK, Jae-Kyung K, Mijung K, Won LB, Eunyeong S, Yong-Hee J, Choon-Ki L, Hyun-Joo K (2018) Effects of gamma-irradiated soybean pod extract on oxidative stress, cancer cell viability, and tyrosinase inhibition. J Food Biochem 42(1):e12459. https://doi.org/10.1111/jfbc.12459

    Article  CAS  Google Scholar 

  9. Shim S-L, Hwang I-M, Ryu K-Y, Jung M-S, Seo H-y, Kim H-Y, Song H-P, Kim J-H, Lee J-W, Byun M-W, Kwon J-H, Kim K-S (2009) Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix. Radiat Phys Chem 78(7):665–669. https://doi.org/10.1016/j.radphyschem.2009.03.075

    Article  CAS  Google Scholar 

  10. Koike A, Barreira J, Barros L, Santos-Buelga C, Villavicencio ALCH, Ferreira I (2015) Edible flowers of Viola tricolor L. as a new functional food: antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chem 179:6–14. https://doi.org/10.1016/j.foodchem.2015.01.123

    Article  CAS  PubMed  Google Scholar 

  11. Krishnan V, Singh A, Thimmegowda V, Singh B, Dahuja A, Rai RD, Sachdev A (2016) Low gamma irradiation effects on protein profile, solubility, oxidation, scavenger ability and bioavailability of essential minerals in black and yellow Indian soybean (Glycine max L.) varieties. J Radioannal Nucl Chem 307(1):49–57. https://doi.org/10.1007/s10967-015-4193-3

    Article  CAS  Google Scholar 

  12. Marathe SA, Deshpande R, Khamesra A, Ibrahim G, Jamdar SN (2016) Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans. Radiat Phys Chem 125:1–8. https://doi.org/10.1016/j.radphyschem.2016.03.002

    Article  CAS  Google Scholar 

  13. Wanyo P, Meeso N, Siriamornpun S (2014) Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem 157:457–463. https://doi.org/10.1016/j.foodchem.2014.02.061

    Article  CAS  PubMed  Google Scholar 

  14. Kuan Y-H, Bhat R, Patras A, Karim AA (2013) Radiation processing of food proteins—a review on the recent developments. Trends Food Sci Technol 30(2):105–120. https://doi.org/10.1016/j.tifs.2012.12.002

    Article  CAS  Google Scholar 

  15. Štajner D, Popović BM, Taški K (2009) Effects of γ-irradiation on antioxidant activity in soybean seeds. Cent Eur J Biol 4(3):381–386. https://doi.org/10.2478/s11535-009-0019-z

    Article  CAS  Google Scholar 

  16. Khattak KF, Simpson TJ (2008) Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chem 110(4):967–972. https://doi.org/10.1016/j.foodchem.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Alothman M, Bhat R, Karim AA (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci Technol 20(5):201–212. https://doi.org/10.1016/j.tifs.2009.02.003

    Article  CAS  Google Scholar 

  18. Popovic BM, Stajner D, Mandic A, Canadanovic-Brunet J, Kevresan S (2013) Enhancement of antioxidant and isoflavones concentration in gamma irradiated soybean. Sci World J 2013:383574. https://doi.org/10.1155/2013/383574

    Article  CAS  Google Scholar 

  19. Kumar V, Rani A, Dixit AK, Pratap D, Bhatnagar D (2010) A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res Int 43(1):323–328. https://doi.org/10.1016/j.foodres.2009.10.019

    Article  CAS  Google Scholar 

  20. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Packer L (ed) Methods in enzymology. Academic Press, London, pp 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Chapter  Google Scholar 

  21. Xu BJ, Chang SK (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72(2):S159–S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x

    Article  CAS  PubMed  Google Scholar 

  22. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42(3):629–632. https://doi.org/10.1021/jf00039a005

    Article  CAS  Google Scholar 

  23. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  24. Pérez MB, Calderón NL, Croci CA (2007) Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem 104(2):585–592. https://doi.org/10.1016/j.foodchem.2006.12.009

    Article  CAS  Google Scholar 

  25. Anna G-G, Marlena D-M, Irena M (2012) DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol Crac Ser Bot 54(2):32–38. https://doi.org/10.2478/v10182-012-0017-8

    Article  Google Scholar 

  26. Kushwaha D, Verma Y (2017) Evaluation of antioxidant and free radical scavenging activity of Tagetes patula. Annu Res Rev Biol 13(6):1–8. https://doi.org/10.9734/ARRB/2017/34349

    Article  Google Scholar 

  27. Tanhindarto P, Hariyadi R, Purnomo P, Irawati E (2013) Effects of gamma irradiation at different combinations of dose-rate and time of exposure on the isoflavone contents of soybean. Asian J Food Agro-Ind 6(06):322–328

    Google Scholar 

  28. Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). J Agric Food Chem 52(11):3385–3388. https://doi.org/10.1021/jf030793j

    Article  CAS  PubMed  Google Scholar 

  29. Yun J, Li X, Fan X, Tang Y, Xiao Y, Wan S (2012) Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill). Radiat Phys Chem 81(8):1198–1202. https://doi.org/10.1016/j.radphyschem.2011.11.030

    Article  CAS  Google Scholar 

  30. Pendharkar MB, Nair PM (1995) A comparative study of phenylpropanoid metabolism in gamma irradiated and unirradiated potato tubers. Potato Res 38(2):187–198. https://doi.org/10.1007/BF02357932

    Article  CAS  Google Scholar 

  31. Oufedjikh H, Mahrouz M, Amiot MJ, Lacroix M (2000) Effect of gamma-irradiation on phenolic compounds and phenylalanine ammonia-lyase activity during storage in relation to peel injury from peel of Citrus clementina hort. Ex. tanaka. J Agric Food Chem 48(2):559–565

    Article  CAS  Google Scholar 

  32. Vardhan PV, Shukla LI (2017) Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int J Radiat Biol 93(9):967–979. https://doi.org/10.1080/09553002.2017.1344788

    Article  CAS  PubMed  Google Scholar 

  33. El-Beltagi HS, Ahmed OK, El-Desouky W (2011) Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiat Phys Chem 80(9):968–976. https://doi.org/10.1016/j.radphyschem.2011.05.002

    Article  CAS  Google Scholar 

  34. Hussain PR, Wani AM, Meena RS, Dar MA (2010) Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach (Prunus persica Bausch, Cv. Elberta). Radiat Phys Chem 79(9):982–989. https://doi.org/10.1016/j.radphyschem.2010.03.018

    Article  CAS  Google Scholar 

  35. Benoit MA, D’Aprano G, Lacroix M (2000) Effect of gamma-irradiation on phenylalanine ammonia-lyase activity, total phenolic content, and respiration of mushrooms (Agaricus bisporus). J Agr Food Chem 48(12):6312–6316

    Article  CAS  Google Scholar 

  36. Harrison K, Were LM (2007) Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chem 102(3):932–937. https://doi.org/10.1016/j.foodchem.2006.06.034

    Article  CAS  Google Scholar 

  37. Lee NY, Jo C, Sohn SH, Kim JK, Byun MW (2006) Effects of gamma irradiation on the biological activity of green tea byproduct extracts and a comparison with green tea leaf extracts. J Food Sci 71(4):C269–C274. https://doi.org/10.1111/j.1750-3841.2006.00017.x

    Article  CAS  Google Scholar 

  38. Jamshidi M, Barzegar M, Sahari MA (2014) Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea. Int Food Res J 21(4):1289–1296

    Google Scholar 

  39. Saxena S, Gautam S, Sharma A (2010) Microbial decontamination of honey of indian origin using gamma radiation and its biochemical and organoleptic properties. J Food Sci 75(1):M19–M27. https://doi.org/10.1111/j.1750-3841.2009.01405.x

    Article  CAS  PubMed  Google Scholar 

  40. Taheri S, Abdullah TL, Karimi E, Oskoueian E, Ebrahimi M (2014) Antioxidant capacities and total phenolic contents enhancement with acute gamma irradiation in Curcuma alismatifolia (Zingiberaceae) leaves. Int J Mol Sci 15(7):13077–13090. https://doi.org/10.3390/ijms150713077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suhaj M, Horvathova J (2007) Changes in antioxidant activity induced by irradiation of clove (Syzygium aromaticum) and ginger (Zingiber officinale). J Food Nutr Res 46(3):112–122

    CAS  Google Scholar 

  42. Bhat R, Sridhar KR, Tomita-Yokotani K (2007) Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chem 103(3):860–866. https://doi.org/10.1016/j.foodchem.2006.09.037

    Article  CAS  Google Scholar 

  43. de Toledo TCF, Canniatti-Brazaca SG, Arthur V, Piedade SMS (2007) Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains. Radiat Phys Chem 76(10):1653–1656. https://doi.org/10.1016/j.radphyschem.2007.02.001

    Article  CAS  Google Scholar 

  44. Hwan Nam D, Jung Kim H, Sun Lim J, Heon Kim K, Park CS, Hwan Kim J, Lim J, Young Kwon D, Kim IH, Kim JS (2011) Simultaneous enhancement of free isoflavone content and antioxidant potential of soybean by fermentation with Aspergillus oryzae. J Food Sci 76(8):H194–H200. https://doi.org/10.1111/j.1750-3841.2011.02350.x

    Article  CAS  PubMed  Google Scholar 

  45. Byun M-W, Son J-H, Yook H-S, Jo C, Kim D-H (2002) Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang. Radiat Phys Chem 64(3):245–248. https://doi.org/10.1016/S0969-806X(01)00492-3

    Article  CAS  Google Scholar 

  46. Huang S-J, Mau J-L (2006) Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of γ-irradiation. LWT Food Sci Technol 39(7):707–716. https://doi.org/10.1016/j.lwt.2005.06.001

    Article  CAS  Google Scholar 

  47. Pérez MB, Banek SA, Croci CA (2011) Retention of antioxidant activity in gamma irradiated argentinian sage and oregano. Food Chem 126(1):121–126. https://doi.org/10.1016/j.foodchem.2010.10.087

    Article  CAS  Google Scholar 

  48. Thongphasuk P, Thongphasuk J (2012) Effects of irradiation on active components of medicinal plants: a review. Rangsit J Arts Sci 2(1):57–71

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mehdi Moridi of Medicinal Plants Research Institute, Shahid Beheshti University, for kindly helping in preparing and extracting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolkarim Hosseini.

Ethics declarations

Conflict of interest

The researchers confirm that there is no conflict of interests in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alivandi Farkhad, S., Hosseini, A. Effect of gamma irradiation on antioxidant potential, isoflavone aglycone and phytochemical content of soybean (Glycine max L. Merrill) cultivar Williams. J Radioanal Nucl Chem 324, 497–505 (2020). https://doi.org/10.1007/s10967-020-07100-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07100-0

Keywords

Navigation