Skip to main content
Log in

Effect of γ-irradiation on the physicochemical and sensory properties of walnuts (Juglans regia L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The present study evaluated physicochemical and sensory quality parameters of walnuts as a function of irradiation dose in order to determine dose levels causing minimal undesirable changes to walnuts. Physicochemical parameters including peroxide value (PV), hexanal content, fatty acid composition, volatile compounds and sensory parameters including color, texture, odor and taste were determined for unirradiated and irradiated walnuts at radiation doses of 1.0, 1.5, 3.0, 5.0 and 7.0 kGy. PV increased from 1.1 to 3.0 meq O2/kg walnut oil while the hexanal content increased from 3.80 to 34.3 mg/kg walnut after irradiation at a dose of 7.0 kGy. Of the fatty acids determined, stearic and palmitic acids concentration increased while oleic acid decreased with irradiation dose. Polyunsaturated fatty acids were unaffected by irradiation. Volatile compounds such as aldehydes, ketones, alcohols and hydrocarbons increased after irradiation indicating enhanced lipid oxidation. Color parameter L*, a* and b* remained unaffected by irradiation. Sensory analysis showed that taste was the most sensitive of all sensory attributes for the evaluation of walnut quality. Based on taste and odor scores, walnuts remained organoleptically acceptable at doses ≤3.0 kGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kris-Etherton PM, Yu-Poth S, Sabaté J, Ratcliffe H, Zhao G, Etherton T (1999) Am J Clin Nutr 70(Suppl 3):504S–511S

    CAS  Google Scholar 

  2. Savage G, Dutta P, McNeil D (1999) J Am Oil Chem Soc 76(9):1059–1063

    CAS  Google Scholar 

  3. Cooke JP, Tsao P, Singer A, Wang BY, Kosek J, Drexler H (1993) Arch Intern Med 153:898–899

    Google Scholar 

  4. Amaral J, Casal S, Pereira A, Seabra M, Oliveira P (2003) J Agric Food Chem 51:7698–7770

    CAS  Google Scholar 

  5. Simopoulos AP (1990) Am J Clin Nutr 70(suppl 3):560S–569S

    Google Scholar 

  6. Almario RU, Vonghavaravat V, Wong R, Kasim-Karakas SE (2001) Am J Clin Nutr 74(1):72–79

    CAS  Google Scholar 

  7. Zambon D, Sabate J, Munoz S, Campero B, Casals E, Merlos M, Laguna JC, Ros E (2000) Ann Intern Med 132:538–546

    CAS  Google Scholar 

  8. Halvorsen B, Holte K, Myhrstad M, Barikmo I, Hvattum E, Remberg S, Wold A, Haffner K, Baugerod H, Andersen L, Moskaug J, Jacobs D Jr, Blomhoff R (2002) Am J Clin Nutr 132Q:461–471

    Google Scholar 

  9. Halvorsen B, Carlsen M, Phillips K, Bohn S, Jacobs D Jr, Blomhoff R (2006) Am J Clin Nutr 84:95–135

    CAS  Google Scholar 

  10. Wilson-Kakashita G, Gerdes D, Hall W (1995) Lebensmittel Wissenschaft und Technologie 28:17–20

    CAS  Google Scholar 

  11. USDA (2006) Location: PlantMycotoxin_Research. http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=403736&showpars=true&fy=2006

  12. Commission Directive 98/53/EC of 16 July 1998 OJEC, L201/93, Luxembourg

  13. United Nations Environment Programme (1992) UNEP, Copenhagen 17:13–31

    Google Scholar 

  14. Al-Bachir M (2004) J Stored Prod Res 40:355–362

    CAS  Google Scholar 

  15. World Health Organization (1999) WHO Technical Report Series 890:9–37

  16. Gyawali R, Hye-Young S, Hyun-Ju L, Hyun-Pa S, Dong-Ho K, Myung-Woo B, Kyong-Su K (2006) Radiat Phys Chem 75(2):322–328

    CAS  Google Scholar 

  17. Sajilata M, Singhal R (2006) Radiat Phys Chem 75:297–300

    CAS  Google Scholar 

  18. Gölge E, Ova G (2008) Radiat Phys Chem 77:365–369

    Google Scholar 

  19. Mansour Y, Al-Bachir M (1995) J Appl Entomol 119:631–636

    Article  Google Scholar 

  20. General State Chemical Laboratory (1976) Off. Methods Anal. Part b, Printing office, Athens, Greece, pp 17

  21. Commission Regulation (EC) (1991) No 2568/91 of 11 July 1991 OJEC L 248, 1–82

  22. Pastorelli S, Valzacchl S, Rodriguez A, Simoneau A (2006) Food Addit Contam 23(11):1236–1241

    CAS  Google Scholar 

  23. Carasek E, Pawliszyn J (2006) J Agric Food Chem 54:8688–8696

    CAS  Google Scholar 

  24. Inayatulah H, Zeb A, Ahmad M, Khan I (1987) Nucleus 24:31–34

    Google Scholar 

  25. Chiou Y (1994) Acta Alimentaria 25:311–314

    Google Scholar 

  26. Uthman R, Toma R, Garcia R, Medora N, Cunningham S (1999) J Sci Food Agric 78:261–266

    Google Scholar 

  27. Jan M, Langerak I, Wolters G, Farkas J (1988) Acta Aliment Hung 17:13–31

    Google Scholar 

  28. Chiou YY, Lin CM, Shuy SL (1990) J Food Sci 55:210–213

    CAS  Google Scholar 

  29. Torres M, Martinez M, Maestri D (2005) J Am Oil Chem Soc 82:105–110

    CAS  Google Scholar 

  30. Venkatachalam M, Shridhar S (2006) J Agric Food Chem 54:4705–4714

    CAS  Google Scholar 

  31. Bhattacharjee P, Singhal R, Gholap A, Variyar P, Bongirwar D (2003) Food Chem 80:151–157

    CAS  Google Scholar 

  32. Hu F, Stampfer M, Manson J, Rimm E, Colditz G, Rosner B, Speizer F, Hennekens C, Willett W (1999) Am J Clin Nutr 70:1001–1008

    CAS  Google Scholar 

  33. Spady K, Dietscy M (1988) J Clin Invest 81:302–309

    Google Scholar 

  34. Ammon J, Mildan G, Ruge W, Delincee H (1992) Deutshe Lebensmittel-Rundschau 88(2):35–37

    CAS  Google Scholar 

  35. Frankel E (1982) Prog Lipid Res 22:1–33

    Google Scholar 

  36. Shahidi F (2001) Adv Exp Med Biol 488:113–123

    CAS  Google Scholar 

  37. Pastorelli S, Torri L, Rodriguez S, Valzacchi S, Limbo S, Simoneau C (2007) Food Addit Contam 24(11):1219–1225

    CAS  Google Scholar 

  38. Jo C, Ahn U (2000) J Food Sci 65(4):612–616

    CAS  Google Scholar 

  39. Sirisoontaralak P, Noomhorm A (2006) J Stored Prod Res 42:264–276

    CAS  Google Scholar 

  40. O’Mahoney M, Wong Y, Odbert N (1985) J Ind Irradiated Tech 3:135–140

    Google Scholar 

  41. Kashani G, Valadon G (1984) J Food Tech 19:631–638

    Article  CAS  Google Scholar 

  42. Thomas P (1988) CRC Crit Rev Food Sci Nutr 26:313–358

    Article  CAS  Google Scholar 

  43. Navaiz P, Lescapo G, Kairiyama E (1992) Food Sci Technol 25(3):232–239

    Google Scholar 

  44. Khan I (1993) Aspects of food irradiation processing. IAEA, Vienna, pp 155–158

    Google Scholar 

Download references

Acknowledgments

We wish to thank G.Sdoukos SA Ioannina, Greece for supplying the walnuts and ELVIONY S.A plant for providing access to its irradiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Kontominas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mexis, S.F., Kontominas, M.G. Effect of γ-irradiation on the physicochemical and sensory properties of walnuts (Juglans regia L.). Eur Food Res Technol 228, 823–831 (2009). https://doi.org/10.1007/s00217-008-0995-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0995-7

Keywords

Navigation