Skip to main content
Log in

Kinetics of Denaturation and Effects of Surfactants and Polyethylene Glycol on Soybean Esterase (Glycine max L) Stability

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The objective of this work was to evaluate the kinetics and thermodynamics parameters and the effects of anionic, cationic and nonionic surfactants and polyethylene glycol on the activity and stability of a crude esterase extracted from soybeans (Glycine max L.). The activation energy for thermal inactivation was calculated from the Arrhenius plot was found to be 59.4 kJ mol−1 and the ΔH* 56.82 kJ mol−1 at 40 °C, which was the optimum temperature for enzyme activity. The ΔS* and ΔG* of the enzyme were found to be 61.67 kJ mol−1 and 15.50 J mol−1 K−1, respectively, at the optimum temperature. The activity was only enhanced by the cationic surfactants cetyltrimethylammonium bromide and tetradecylmethylammonium bromide at a concentration of 3.0 mM. The anionic surfactant showed a positive effect on enzyme activity at the concentrations of 1.5 and 3.0 mM. Aqueous PEG (polyethylene glycols) solutions activated the esterase, and maximum activation (170 %) occurred with the addition of 6 kDa PEG. PEG with molecular weights of 0.4 and 10 kDa enhanced enzyme stability at 40 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polizelli PP, Tiera MJ, Bonilla-Rodriguez GO (2008) Effect of surfactants and polyethylene glycol on the activity and stability of a lipase from oilseeds of Pachira aquatica. J Am Oil Chem Soc 85:749–753

    Article  CAS  Google Scholar 

  2. Paques FW, Macedo GA (2006) Lipases de Látex vegetais: propriedades e Aplicações industriais: a review. Quim Nova 29:93–102

    Article  CAS  Google Scholar 

  3. Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties—a review. Braz J Chem Eng 27:15–29

    Article  CAS  Google Scholar 

  4. Barros M, Macedo GA (2011) Biochemical characterization and biocatalytic potential of esterase from Brazilian Glycine max L. J Food Sci Biotechnol 20:1195–1201

    Article  CAS  Google Scholar 

  5. Chahiniana H, Ninib L, Boitardc E, Dubèsc JP, Comeaub LC, Sardad L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662

    Article  Google Scholar 

  6. Mendes AA, Oliveira PC, de Castro HF (2012) Properties and biotechnological applications pancreatic lipase. J Mol Catal B-Enzym 78:119–134

    Article  CAS  Google Scholar 

  7. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  CAS  Google Scholar 

  8. Davranov K (1994) Microbial lipases in biotechnology. Appl Biochem Micro 30:427–432

    Google Scholar 

  9. Stamatis H, Xenakis A, Kolisis FN (1999) Bioorganic reactions in microemulsions the case of lipase. Biotechnol Adv 17:293–318

    Article  CAS  Google Scholar 

  10. Holmberg K (2003) Organic reactions in microemulsions. Curr Opin Colloid Interface Sci 8:187–196

    Article  CAS  Google Scholar 

  11. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye biding. Anal Biochem 39:239–247

    Google Scholar 

  12. Aizono Y, Funatsu M, Sugano M, Hayashi K, Fujiki Y (1973) Enzymatic properties of rice bran lipase. Agr Biol Chem Tokyo 37:2031–2036

    Article  CAS  Google Scholar 

  13. Pio TF, Macedo GA (2007) Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology. Enzyme Microb Tech 41:613–619

    Article  CAS  Google Scholar 

  14. Marangoni AG (2003) Enzyme kinetics: a modern approach. Hoboken, New Jersey

    Google Scholar 

  15. Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic of the irreversible and inactivations of myrosinase form broccoli (Brassica oleracea L. Cv. Italica). J Agric Food Chem 47:1794–1800

  16. Longo MA, Combes D (1999) Thermostability of modified enzymes: a detailed study. J Chem Technol Biotechnol 74:25–32

    Article  CAS  Google Scholar 

  17. Bhatti HN, Amin F (2013) Kinetic and hydrolytic characterization of newly isolated alkaline lipase form Ganoderma lucidum using canola oil cake as substrate. J Chem Soc Pak 35(3):33–38

    Google Scholar 

  18. Staubmam R, Ncube I, Gübitz GM, Steiner W, Read JS (1999) Esterase and lipase activity in Jatropha curcas L. seeds. J Biotechnol 75:117–126

    Article  Google Scholar 

  19. Rhee JK, Dg Ahn, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825

    Article  CAS  Google Scholar 

  20. Souza CFV, Faccin DJL, Mertins O, Heck JX, Silveira NP, Secchi AR, Ayub MAS (2009) Kinetics of thermal inactivation of transglutaminase from a newly isolated Bacillus circulansBL32. J Chem Technol Biotechnol 84:1567–1575

    Article  Google Scholar 

  21. Cobos A, Estrada P (2003) Effect of polyhydroxylic solvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414. Enzyme Microb Technol 33:810–818

    Article  CAS  Google Scholar 

  22. Ghori MI, Iqbal MJ, Hameed A (2011) Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol 42:22–29

    Article  CAS  Google Scholar 

  23. Ortega N, Diego S, Rodriguez-Nogalez JM, Perez-Mateos M, Busto MD (2004) Kinetics behavior and thermal inactivation of pectin lyase used in food processing. Int J Food Sci Technol 39:631–639

    Article  CAS  Google Scholar 

  24. Delorme V, Dhouib R, Canaan S, Fotiadu F, Carrière F, Cavalier JF (2011) Effects of surfactants on lipase structure, activity, and inhibition. Pharmaceut Res 28:1831–1842

    Article  CAS  Google Scholar 

  25. Pancera SM, da Silva LHW, Loh W, Itri R Jr, Pessoa A, Petri FS (2002) The effect of poly(ethylene glycol) on the activity and structure of glucose-6-phosphate dehydrogenase in solution. Colloid Surface B 26:291–300

    Article  CAS  Google Scholar 

  26. Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interface 147:237–250

    Article  Google Scholar 

  27. Mendes AA, Barbosa BC, Soares CMF, da Silvaand MLC, de Castro HF (2006) Atividade e estabilidade operacional de lipase imobilizada em fosfato de zircônio na ausência e presença de polietilenoglicol. Acta Sci Technol 28:133–140

    CAS  Google Scholar 

  28. Fahmy AS, Abo-Zeid AZ, Mohamed TM, Ghanem HM, Borai HI, Mohamed SA (2008) Characterization of esterases from Cucurbita pepocv Eskandrani. Bioresour Technol 99:437–443

    Article  CAS  Google Scholar 

  29. Diaz JC, Cordova J, Baratti J, Carriere F, Abousalham A (2007) Effect of nonionic surfactants on Rhizopus homothallicus lipase activity. Mol Biotechnol 35:205–214

    Article  CAS  Google Scholar 

  30. Verger R, Haas GH (1976) Interfacial enzyme kinetics of lipolysis. Annu Biophys Bioeng 5:77–1176

    Article  CAS  Google Scholar 

  31. Aguiar J, Carpena P, Molina-Bolívar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio de Barros.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, M., Celligoi, M.A.P.C. & Macedo, G.A. Kinetics of Denaturation and Effects of Surfactants and Polyethylene Glycol on Soybean Esterase (Glycine max L) Stability. J Am Oil Chem Soc 93, 37–44 (2016). https://doi.org/10.1007/s11746-015-2755-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2755-8

Keywords

Navigation