Skip to main content
Log in

Biochemical characterization of esterase from soybean (Glycine max L.)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Esterases are enzymes that present good potential in industrial application, and soybean seed can represent an alternative source for this enzyme. The extraction and esterase activity of Brazilian soybean seeds (Glycine max L.) were evaluated. Esterase activity was found in both the germinated and non-germinated seeds at 2.90 and 1.70 U/mg, respectively, with a concentration in the powdered extract (freeze dried) of 100 mg/mL. The enzyme showed a preference for the hydrolysis of short chain fatty acids (120.02 U/mL) and optimum pH for activity was pH 8.0 with optimum temperatures of 40 and 80°C. The enzyme showed stability at 70°C showing 60% of residual activity and activity increased with the addition of the following salts: NaNO3, K2SO4, and Na2SO4 in the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohamed MA, Mohamed TM, Mohamed SA, Fahmy AS. Distribuition of lipases in the graminae. Partial purification and characterization of esterase from Avena fatua. Bioresource Technol. 73: 227–234 (2000)

    Article  CAS  Google Scholar 

  2. Maia MA, Heasley A, de Morais MMC, Melo EHM, Morais Jr MA, Lendingham WM, Lima Filho JL. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technol. 76: 23–27 (2001)

    Article  CAS  Google Scholar 

  3. Panda T, Gowrishankar BS. Production and applications of esterases. Appl. Microbiol. Biot. 67: 160–169 (2005)

    Article  CAS  Google Scholar 

  4. Singh R, Gupta N, Goswami VK, Gupta RS. Simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biot. 70: 679–682 (2006)

    Article  CAS  Google Scholar 

  5. Fahmy AS, Abo-Zeid AZ, Mohamed TM, Ghanem HM, Borai IH, Mohamed AS. Characterization of esterases from Cucurbita pepo cv. Eskandrani. Bioresource Technol. 99: 437–443 (2008)

    Article  CAS  Google Scholar 

  6. Freire GDM, Castilho FLR. Lipases in biocatalysis. pp. 369–385. In: Enzyme in Biotechnology Production, Application, and Market. Bom EPS, Ferrara MA, Corvo ML (eds). Interciências, Rio de Janeiro, Brazil (2008)

    Google Scholar 

  7. Barros M, Fleuri LF, Macedo AG. Seed lipase: Sources, applications, and properties-A reveiew. Braz. J. Chem. Eng. 27: 15–29 (2010)

    Article  CAS  Google Scholar 

  8. Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39: 235–251 (2006)

    Article  CAS  Google Scholar 

  9. Ruchi G, Anshu G, Khare SK. Lipase from solvent tolerant Pseudomonas aerufinosus strain: Production optimization by response surface methodology and application. Bioresource Technol. 99: 4796–4802 (2008)

    Article  CAS  Google Scholar 

  10. Mukherjee KD, Hills MJN. Lipases from plants. pp. 271–288. In: Lipases-Their Structure, Biochemistry, and Application. Wooley P, Peterson SB (eds). Cambridge University Press, Cambridge, UK (1994)

    Google Scholar 

  11. Paques FW, Macedo GA. Lipases latex plants: Properties and applications industries. Quim. Nova 29: 93–99 (2006)

    Article  CAS  Google Scholar 

  12. Hellyer SA, Chandler IC, Bosley JA. Can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride? Biochim. Biophys. Acta 1440: 215–224 (1999)

    CAS  Google Scholar 

  13. Villeneuve P. Plant lipases and their applications in oils and fats modification. Eur. J. Lipid. Sci. Tech. 105: 308–317 (2003)

    Article  CAS  Google Scholar 

  14. Enujiagha VN, Thani FA, Sanni TM, Abigor RD. Lipase activity in dormant seeds of the African oil bean (Pentaclethra macrophylla Benth). Food Chem. 88: 405–410 (2004)

    Article  Google Scholar 

  15. Polizelli PP, Tiera MJ, Bonilla-Rodriguez GO. Effect of surfactants and polyethylene glycol on the activity and stability of a lipase from oilseeds of Pachira aquatica. J. Am. Chem. Soc. 85: 749–753 (2008)

    Article  CAS  Google Scholar 

  16. Liaquat M, Apenten RKO. Synthesis of low molecular weight flavor esters using plant seedling lipases in organic media. J. Food Sci. 65: 295–299 (2000)

    Article  CAS  Google Scholar 

  17. Sagiroglu A, Arabaci N. Sunflower seed lipase: Extraction, purification, and characterization. Prep. Biochem. Biotech. 35: 37–51 (2005)

    Article  CAS  Google Scholar 

  18. Sadeghipour HR, Bhatla SC. Light-enhanced oil body mobilization in sunflower seedlings accompanies faster protease action on oleosins. Plant Physiol. Bioch. 41: 309–316 (2003)

    Article  CAS  Google Scholar 

  19. Sammour RH. Purification and partial characterization of an acid lipase in germinating lipid body linseedlings. Turk. J. Bot. 29: 177–184 (2005)

    Google Scholar 

  20. Huang AHC, Moreau RA. Lipases in the storage tissues of peanut and other oil seeds during germination. Planta 141: 111–116 (1978)

    Article  CAS  Google Scholar 

  21. Rakhimov MM, Dzhanbaeva NR, Yuldashev PK. Specify of the lipase from cottonseed. Chem. Nat. Compd+. 6: 616–619 (1970)

    Article  Google Scholar 

  22. Stejskal J, Grica M. Comparative analysis of some isozymes and proteins in somatic and zygotic embryos of soybean (Glycine max L.). J. Plant Physiol.146: 497–502 (1995)

    CAS  Google Scholar 

  23. Aizono Y, Funatsu M, Sugano M, Hayashi K, Fujiki Y. Enzymatic properties of rice bran lipase. Agr. Biol. Chem. Tokyo 37: 2031–2036 (1973)

    Article  CAS  Google Scholar 

  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  25. Pio TF, Macedo GA. Optimizing the production of cutinase by Fusarium oxysporun using response surface methodology. Enzyme Microb. Tech. 41: 613–619 (2007)

    Article  CAS  Google Scholar 

  26. Macedo GA, Pastore GM. Microbial lipases in the production of aroma esters forming. Rev. Soc. Bras. Cienc. Tecnol. Alim. 17: 115–119 (1997)

    CAS  Google Scholar 

  27. Hassanien FR, Mukhrjee KD. Isolation of lipase from germinating oilseeds for biotechnological processes. J. Am. Chem. Soc. 63: 893–897 (1986)

    Article  CAS  Google Scholar 

  28. Ejedegba BO, Onyeneke EC, Oviasogie PO. Characteristics of lipase isolated form coconut (Cocos nucifera linn) seed under different nutrient treatments. Afr. J. Biotech. 6: 723–727 (2007)

    CAS  Google Scholar 

  29. Borek S, Ratajczak W, Ratajczak L. Ultra structural and enzymatic research on the role of sucrose in mobilization the storage lipids in germinating yellow lupine seeds. Plant Sci. 170: 441–452 (2006)

    Article  CAS  Google Scholar 

  30. Huang AHC, Lin YH, Wang SM. Characteristics and biosynthesis of seed lipases in maize and other plant species. J. Am. Chem. Soc. 65: 897–899 (1988)

    Article  CAS  Google Scholar 

  31. Nwanguma BC, Ezengwa MO, Ezengwa OO. Changes in activity of sorghum lipase malting and mashing. J. I. Brewing 102: 39–41 (1996)

    CAS  Google Scholar 

  32. Borgston B, Brockman HL. Lipases. Elsevier, Amsterdam, Netherlands. pp. 5–7 (1984)

    Google Scholar 

  33. Marten B, Pfeuffer M, Scherezenmeir J. Medium-chain triglycerides. Int. J. Dairy Tech. 16: 1374–1382 (2006)

    Article  CAS  Google Scholar 

  34. Osborn HT, Akoh CC. Structure lipids-novel fats with medical, nutraceutical, and food applications. Crit. Rev. Food. Sci. F. 3: 110–120 (2002)

    Article  Google Scholar 

  35. Kubicka E, Grabska J, Jedrychowski L, Czyz B. Changes of specific activity of lipase and lipoxygenase during germination of wheat and barley. J. Food. Sci. 51: 301–304 (2000)

    CAS  Google Scholar 

  36. Staubmann R, Ncube I, Gübitz GM, Steiner W, Read JS. Esterase and lipase activity in Jatropha curcas L. seeds. J. Biotechnol. 75: 117–126 (1999)

    Article  CAS  Google Scholar 

  37. Isbilir SS, Ozcan MH, Yagar H. Some biochemical properties of lipase from bay laurel (Laurus nobilis L.) seeds. J. Am. Chem. Soc. 85: 227–233 (2008)

    Article  CAS  Google Scholar 

  38. Yesiloglu Y, Baskurt L. Partial purification and characterization of almond seed lipase. Prep. Biochem. 38: 397–410 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio de Barros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Barros, M., Macedo, G.A. Biochemical characterization of esterase from soybean (Glycine max L.). Food Sci Biotechnol 20, 1195–1201 (2011). https://doi.org/10.1007/s10068-011-0165-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0165-8

Keywords

Navigation