Skip to main content
Log in

Acyl-CoA synthetase activity in liver microsomes from calcium-deficient rats

  • Published:
Lipids

Abstract

A study on the kinetic properties of the nonspecific acyl-coenzyme A (CoA) synthetase activity in liver microsomal vesicles from both normal and calcium-deficient Wistar rats was carried out. After a 65-d treatment, the calcium-deficient diet reflected a 75% increase in the synthetase activity with respect to control animals. The apparent Vm was significantly enhanced, while the Km remained unchanged. We also provided experimental evidence about various fatty acids of different carbon length and unsaturation which depressed the biosynthesis of palmitoyl-CoA following different behaviors in control or calcium-deprived liver microsomes. In addition, we studied in detail the inhibition reflected by stearic, α-linolenic, or arachidonic acids, in the biosynthesis of palmitoyl-CoA in microsomal suspensions either from control or hypocalcemic rats. In control microsomes, stearic acid produced a pure competitive effect, while the other fatty acids followed a mixed-type inhibition. The competitive effect of stearic acid was not observed in calcium-deprived microsomes. At the same time, a mixed-type inhibition produced by either α-linolenic or arachidonic acid was diminished in deprived microsomes due to an increase in the noncompetitive component (αKi). These changes observed in apparent kinetic constants (Km, Vm, Ki, and αKi), as determined by Lineweaver-Burks and Dixon plots, were attributed to the important alterations in the physicochemical properties of the endoplasmic reticulum membranes induced by the calcium-deficient diet. The solubilization of the enzyme activity from both types of microsomes demonstrated that the kinetic behavior of the enzyme depends on the microenvironment in the membrane, and that the calcium ion plays a crucial role in determining the alterations observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACS:

acyl-CoA synthetase

CD:

calcium-deficient

S:

standard (control)

SEM:

standard error of the mean

References

  1. Kornberg, A., and Pricer, W.E., Jr. (1953) The Purification of Acyl Coenzyme A by Ion Exhange Chromatography, J. Biol. Chem. 203, 329–343.

    Google Scholar 

  2. Tanaka, T., Hosaka, K., Hoshimaru, M., and Numa, S. (1979) Purification and Properties of Long-Chain Acyl-Coenzyme-A Synthetase from Rat Liver, Eur. J. Biochem. 98, 165–172.

    Article  PubMed  CAS  Google Scholar 

  3. Normann, P.T., Norseth, J., and Flatmark, T. (1983) Acyl-CoA Synthetase Activity of Rat Heart Mitochondria. Substrate Specificity with Special Reference to Very-Long-Chain and Isomeric Fatty Acids, Biochim. Biophys. Acta 752, 474–481.

    PubMed  CAS  Google Scholar 

  4. Iritani, N., Ikeda, Y., and Kajitani, H. (1984) Selectivities of L-Acylglycerophosphorylcholine-Acyltransferase and Acyl-CoA Synthetase for n-3 Polyunsaturated Fatty Acids in Platelets and Liver Microsomes, Biochim. Biophys. Acta 793, 416–422.

    PubMed  CAS  Google Scholar 

  5. Reddy, T.S., Sprecher, H., and Bazan, N.G. (1984) Long-Chain Acyl-Coenzyme A Synthetase from Rat Brain Microsomes. Kinetic Studies Using [1-14C]Docosahexaenoic Acid Substrate, Eur. J. Biochem. 145, 21–29.

    Article  PubMed  CAS  Google Scholar 

  6. Mandon, E.C., de Gomez Dumm, I.N.T., and Brenner, R.R. (1988) Long-Chain Fatty Acyl-CoA Synthetase of Rat Adrenal Microsomes. Effect of ACTH and Epinephrine, Mol. Cell. Endocrinol. 56, 123–131.

    Article  PubMed  CAS  Google Scholar 

  7. Fujino, T., and Yanamoto, T. (1992) Cloning and Functional Expression of a Novel Long-Chain Acyl-CoA Synthetase Expressed in Brain, J. Biochem. 111, 197–203.

    PubMed  CAS  Google Scholar 

  8. Hurtado de Catalfo, G., de Gomez Dumm, I.N.T., and Mandon, E.C. (1993) Long-Chain Acyl-CoA Synthetase of Rat Testis Microsomes. Substrate Specificity and Hormonal Regulation, Biochem. Mol. Biol. Int. 31, 643–649.

    PubMed  CAS  Google Scholar 

  9. Sugiura, T., Kudo, N., Ojima, T., Kondo, S., Yamashita, A., and Waku, K. (1995) Coenzyme A-Dependent Modification of Fatty Acyl Chains of Rat Liver Membrane Phospholipids: Possible Involvement of ATP-Independent Acyl-CoA Synthesis, J. Lipid Res. 36, 440–450.

    PubMed  CAS  Google Scholar 

  10. Mishima, M., Kamiryo, T., Tashiro, S., and Numa, S. (1978) Coenzyme A-Dependent Modification of Fatty Acyl Chains of Rat Liver Membrane Phospholipids: Possible Involvement of ATP-Independent Acyl-CoA Synthesis, Eur. J. Biochem. 82, 347–354.

    Article  Google Scholar 

  11. Hosaka, K., Mishima, M., Tanaka, T., Kamiryo, T., and Numa, S. (1979) Acyl-Coenzyme-A Synthetase I from Candida lipolytica. Purification, Properties and Immunochemical Studies, Eur. J. Biochem. 93, 197–203.

    Article  PubMed  CAS  Google Scholar 

  12. Beaumelle, B., and Vial, H.J. (1988) Acyl-CoA Synthetase Activity in Plasmodium knowlesi-Infected Erythrocytes Displays Peculiar Substrate Specificities, Biochim. Biophys. Acta 958, 1–9.

    PubMed  CAS  Google Scholar 

  13. Taylor, A.S., Sprecher, H., and Russell, J.H. (1985) Characterization of an Arachidonic-Selective Acyl-CoA Synthetase from Murine T Lymphocytes, Biochim. Biophys. Acta 833, 229–238.

    PubMed  CAS  Google Scholar 

  14. Wilson, D.B., Prescott, S.M., and Majerus, P.W. (1982) Discovery of an Arachidonoyl Coenzyme A Synthetase in Human Platelets, J. Biol. Chem. 257, 3510–3515.

    PubMed  CAS  Google Scholar 

  15. Bronfman, M., Inestrosa, N.C., Nervi, F.O., and Leighton, F. (1984) Acyl-CoA Synthetase and the Peroxisomal Enzymes of β-Oxidation in Human Liver, Biochem. J. 224, 709–720.

    PubMed  CAS  Google Scholar 

  16. Laposata, M., Reich, E.L., and Majerus, P.W. (1985) Arachidonoyl-CoA Synthetase. Separation from Nonspecific Acyl-CoA Synthetase and Distribution in Various Cells and Tissues, J. Biol. Chem. 260, 11016–11020.

    PubMed  CAS  Google Scholar 

  17. Yates, D.W., Shepherd, D., and Garland, P.B. (1966) Organization of Fatty-Acid Activation in Rat Liver Mitochondria, Nature 209, 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  18. Farstad, M., Bremer, J., and Norum, K.R. (1967) Long-Chain Acyl-CoA Synthetase in Rat Liver. A New Assay Procedure for the Enzyme, and Studies on Its Intracellular Localization, Biochim. Biophys. Acta 132, 492–502.

    PubMed  CAS  Google Scholar 

  19. Lippel, K., Robinson, J., and Trams, E.G. (1970) Intracellular Distribution of Palmitoyl-CoA Synthetase in Rat Liver, Biochim. Biophys. Acta. 206, 173–177.

    PubMed  CAS  Google Scholar 

  20. Norum, K.R., Farstad, M., and Bremer, J. (1966) The Submitochondrial Distribution of Acyl-CoA-Ligase (AMP) and Palmitoyl-Carnitine Palmityltransferase in Rat Liver Mitochondria, Biochem. Biophys. Res. Comm. 24, 797–804.

    Article  CAS  Google Scholar 

  21. Garland, P.B., Yates, D.W., and Haddock, B.A. (1970) Spectrophotometric Studies of Acyl-Coenzyme A Synthetase of Rat Liver Mitochondria, Biochem. J. 119, 553–564.

    PubMed  CAS  Google Scholar 

  22. Shindo, Y., and Hashimoto, T. (1978) Acyl-Coenzyme A Synthetase and Fatty Acid Oxidation in Rat Liver Peroxisomes, J. Biochem. (Tokyo) 84, 1177–1181.

    CAS  Google Scholar 

  23. Krisans, S.K., Mortensen, R.M., and Lazarow, P.B. (1980) Acyl-CoA Synthetase in Rat Liver Peroxisomes. Computer Assisted Analysis of Cell Fractionation Experiments, J. Biol. Chem. 255, 9599–9607.

    PubMed  CAS  Google Scholar 

  24. Suzuki, H., Kawarabayasi, Y., Kondo, J., Abe, T., Nishikawa, K., Kimura, S., Hashimoto, T., and Yanamoto, T. (1990) Structure and Regulation of Rat Long-Chain Acyl-CoA Synthetase, J. Biol. Chem. 265, 8681–8685.

    PubMed  CAS  Google Scholar 

  25. Miyazawa, S., Hashimoto, T., and Yokota, S. (1985) Identity of Long-Chain Acyl-Coenzyme A Synthetase of Microsomes, Mitochondria, and Peroxisomes in Rat Liver, J. Biochem. (Tokyo) 98, 723–733.

    CAS  Google Scholar 

  26. Rossi, C.R., and Gibson, D.M. (1964) Activation of Fatty Acids by a Guanosine Triphosphate-Specific Thiokinase from Liver Mitochondria, J. Biol. Chem. 239, 1694–1699.

    PubMed  CAS  Google Scholar 

  27. Batenburg, J.J., and Van der Bergh, S.G. (1973) The Mechanism of Inhibition by Fluoride of Fatty Acid Oxidation in Uncoupled Mitochondria, Biochim. Biophys. Acta 316, 136–142.

    PubMed  CAS  Google Scholar 

  28. Zammit, V.A. (1984) Mechanisms of Regulation of the Partition of Fatty Acids Between Oxidation and Esterification in the Liver, Prog. Lipid Res. 23, 39–67.

    Article  PubMed  CAS  Google Scholar 

  29. Sugiura, T., Kudo, N., Ojima, T., Mabuchi-Itoh, K., Yamashita, A., and Waku, K. (1995) Coenzyme A-Dependent Cleavage of Membrane Phospholipids in Several Rat Tissues: ATP-Independent Acyl-CoA Synthesis and the Generation of Lysophospholipids, Biochim. Biophys. Acta 1255, 167–176.

    PubMed  Google Scholar 

  30. Nagamatsu, K., Soeda, S., Mori, M., and Kishimoto, Y. (1985) Lignoceroyl-Coenzyme A Synthetase from Developing Rat Brain: Partial Purification, Characterization and Comparison with Palmitoyl-Coenzyme A Synthetase Activity and Liver Enzyme, Biochim. Biophys. Acta 836, 80–88.

    PubMed  CAS  Google Scholar 

  31. Numa, S., Bortz, W.M., and Lynen, F. (1965) Regulation of Fatty Acid Synthesis at the Acetyl-CoA Carboxylation Step, Adv. Enzyme Regul. 3, 407–423.

    Article  CAS  Google Scholar 

  32. Knoche, H., Esders, T.W., Koths, K., and Bloch, K. (1973) Palmityl Coenzyme A Inhibition of Fatty Acid Synthesis. Relief by Bovine Serum Albumin and Mycobacterial Polysaccharides, J. Biol. Chem. 248, 2317–2322.

    PubMed  CAS  Google Scholar 

  33. Li, Q., Yanamoto, N., Inoue, A., and Morisawa, S. (1991) An Assay Procedure for Solubilized Thyroid Hormone Receptor: Use of Lipidex, Anal. Biochem. 192, 138–141.

    Article  PubMed  CAS  Google Scholar 

  34. Pfanner, N., Orci, L., Glick, B.S., Amberdt, M., Arden, S.R., Malhotra, V., and Rothman, J.E. (1989) Fatty Acyl-Coenzyme A Is Required for Budding of Transport Vesicles from Golgi Cisternae, Cell 59, 95–102.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, W.H., Wang, Y. and Askari, A. (1989) Mechanism of the Control of (Na+, K+)-ATPase by Long-Chain Coenzyme A, J. Biol. Chem. 264, 2605–2608.

    PubMed  CAS  Google Scholar 

  36. Deeney, J.T., Tornhein, K., Korchak, H.M., Prenetki, M., and Corkey, B.E. (1992) Acyl-CoA Esters Modulate Intracellular Ca2+ Handling by Permeabilized Clonal Pancreatic Beta-Cells, J. Biol. Chem. 267, 19840–19845.

    PubMed  CAS  Google Scholar 

  37. Bronfman, M., Morales, M.N., and Orellana, A. (1988) Diacylglicerol Activation of Protein Kinase C Is Modulated by Long-Chain Acyl-CoA, Biochem. Biophys. Res. Comm., 152, 987–992.

    Article  PubMed  CAS  Google Scholar 

  38. Comerford, J.G., and Dawson, A.P., (1993) Effects of CoA and Acyl-CoAs on GTP-Dependent Ca2+ Release and Vesicle Fusion in Rat Liver Microsomal Vesicles, Biochem. J. 289, 561–567.

    PubMed  CAS  Google Scholar 

  39. Fulceri, R., Gamberucci, A., Bellomo, G., Giunti, R., and Benedetti, A. (1993) CoA and Fatty Acyl-CoA Derivatives Mobilize Calcium from a Liver Reticular Pool, Biochem. J. 295, 663–669.

    PubMed  CAS  Google Scholar 

  40. Rich, J.T., Comerford, J.G., Graham, S., and Dawson, A.P. (1995) Effects of CoA and Acyl-CoA on Ca2+ Permeability of Endoplasmic-Reticulum Membranes from Rat Liver, Biochem. J. 306, 703–708.

    PubMed  CAS  Google Scholar 

  41. Alto, L., and Dhalla, N.S. (1979) Myocardial Cation Contents During Induction of Calcium Paradox, Am. J. Physiol. 237, H713-H719.

    PubMed  CAS  Google Scholar 

  42. Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition ad hoc Writing Committee on The Reformulation of the AIN-76A Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  43. National Research Council (1985) Guide for the Care and Use of Laboratory Animals, Publication No. 85-23 (rev.), National Institutes of Health, Bethesda, MD.

    Google Scholar 

  44. Marra, C.A. de Alaniz, M.J.T., and Brenner, R.R. (1986) Modulation of Δ6 and Δ5 Rat Liver Microsomal Desaturase Activities by Dexamethasone-Induced Factor, Biochim. Biophys. Acta 879, 388–393.

    PubMed  CAS  Google Scholar 

  45. Nagamatsu, K., Soeda, S., and Kishimoto, Y. (1986) Change of Substrate Specificity of Rat Liver Microsomal Fatty Acyl-CoA Synthetase Activity by Triton X-100, Lipids 21, 328–332.

    PubMed  CAS  Google Scholar 

  46. Juárez, M.P., Ayala, S., and Brenner, R.R. (1996) Methyl-Branched Fatty Acid Biosynthesis in Triatoma Infestans, Insect. Biochem. Molec. Biol. 26, 599–605.

    Article  Google Scholar 

  47. Glaumann, H., Bergstrand, A., and Ericson, J.L. (1975) Studies on the Synthesis and Intracellular Transport of Lipoprotein Particles in Rat Liver, J. Cell. Biol. 64, 356–376.

    Article  PubMed  CAS  Google Scholar 

  48. Marra, C.A., and de Alaniz, M.J.T. (1990) Mineralocorticoids Modify Rat Liver Δ6 Desaturase Activity and Other Parameters of Lipid Metabolism, Biochem. Int. 22, 483–493.

    PubMed  CAS  Google Scholar 

  49. Shinitzky, M., and Barenholz, Y. (1974) Dynamics of the Hydrocarbon Layer in Liposomes of Lecithin and Sphingomyelin Containing Diacetylphosphate, J. Biol. Chem. 249, 2652–2657.

    PubMed  CAS  Google Scholar 

  50. Folch, J., Lees, M., and Stanley, G.A.S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  51. Allain, C.C., Poon, L.S., Chen, C.S.G., Richmond, W., and Fu, P.C. (1974) Enzymatic Determination of Total Serum Cholesterol, Clin. Chem. 20, 470–475.

    PubMed  CAS  Google Scholar 

  52. Hanahan, D.J., Dittner, J.C., and Warashima, E. (1957) A Column Chromatographic Separation of Classes of Phospholipids, J. Biol. Chem. 228, 685–690.

    PubMed  CAS  Google Scholar 

  53. Chen, P.S., Toribara, T.Y., and Warner, H. (1956) Microdetermination of Phosphorus, Anal. Chem. 33, 1405–1406.

    Google Scholar 

  54. Lowry, O.H., Rosebrough, M.J., Farr, A.J., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 275–295.

    Google Scholar 

  55. Normann, P.T., Thomassen, M.S., Christiansen, E.N., and Flatmark, T. (1981) Biochim. Biophys. Acta 664, 416–427.

    PubMed  CAS  Google Scholar 

  56. Lineweaver, H., and Burk, D. (1934) The Determination of Enzyme Dissociation Constants, J. Am. Chem. Soc. 56, 658–666.

    Article  CAS  Google Scholar 

  57. Segel, I.H. (1975) in Enzyme Kinetics Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, pp. 105–175, Wiley Interscience Publication, John Wiley & Sons, New York.

    Google Scholar 

  58. Brenner, R.R. (1984) Effect of Unsaturated Fatty Acids on Membrane Structure and Enzyme Kinetics, Prog. Lipid Res. 23, 69–96.

    Article  PubMed  CAS  Google Scholar 

  59. Brenner, R.R., Castuma, C.E., and Garda, H. (1986) Possible Mechanisms by Which Microsomal Lipid Bilayer Composition Modify Bound Enzyme Kinetics, Prog. Lipid Res. 25, 47–52.

    Article  PubMed  CAS  Google Scholar 

  60. Farías, R.N., Bloj, B., Moreno, R.D., Siñeriz, F., and Trucco, R.E. (1975) Regulation of Allosteric Membrane-Bound Enzymes Through Changes in Membrane Lipid Composition, Biochim. Biophys. Acta 415, 231–251.

    PubMed  Google Scholar 

  61. Shinitzky, M., and Inbar, M. (1976) Microviscosity Parameters and Protein Mobility in Biological Membranes, Biochim. Biophys. Acta 433, 133–149.

    Article  PubMed  CAS  Google Scholar 

  62. Storch, J., and Schachter, D. (1985) Calcium Alters the Acyl Chain Composition and Lipid Fluidity of Rat Hepatocyte Plasma Membranes in vitro, Biochim. Biophys. Acta 812, 473–484.

    Article  PubMed  CAS  Google Scholar 

  63. Kishimoto, Y., Soeda, S., and Nagamatsu, N. (1985) Substrate Specificity of Fatty Acyl-CoA Synthetase: Effect of Detergent, Fed. Proc. 44, 1413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Marra.

About this article

Cite this article

Marra, C.A., de Alaniz, M.J.T. Acyl-CoA synthetase activity in liver microsomes from calcium-deficient rats. Lipids 34, 343–354 (1999). https://doi.org/10.1007/s11745-999-0372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0372-x

Keywords

Navigation