Skip to main content
Log in

The Features of Energy Metabolism in Hepatocytes of Rats that Receive Diets with Different Nutrient Contents

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and NADH:ubiquinone reductase in the mitochondrial fraction from the liver tissue of rats fed diets with different sucrose and protein contents have been measured. In animals that received a high-sucrose diet, isocitrate dehydrogenase and malate dehydrogenase activities tend to decline and α-ketoglutarate dehydrogenase activity decreased by a factor of 2.5. Interestingly, the NADH:ubiquinone reductase activity remains at the control level in animals that are fed the high-sucrose diet. In the mitochondrial fraction from the liver tissue of rats that receive a high-sucrose–low-protein diet, the activities of NAD+-dependent dehydrogenases of the Krebs cycle decrease considerably, and the activity of NADH:ubiquinone reductase decreased as well, being more than 2.5 times lower than in the control. This may be one of the steps in the mechanism by which energy generated in the cell is regulated when the sucrose : protein ratio in the diet is imbalanced. These results can be used to develop a strategy for the correction of metabolic disturbances associated with nutrient contents in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Wu, Food Funct. 7 (3), 1251 (2016).

    Article  Google Scholar 

  2. R. V. Tikole, R. Kulkarni, S. Uppinakudru, et al., Int. J. Res. Ayurveda Pharmacy 4 (4), 605 (2013).

    Article  Google Scholar 

  3. J. C. Malta de Oliveira, T. A. Ribeiro, L. P. Tofolo, et al., J. Endocrin. 221 (2), 285 (2014).

    Article  Google Scholar 

  4. M. Maciejczyk, J. Matczuk, M. Żendzian-Piotrowska, et al., Nutrients 10 (10), 1 (2018).

    Article  Google Scholar 

  5. A. Pezeshki, R. Zapata, A. Singh, et al., Sci. Rep. 6. 25145. (2016).

    Article  ADS  Google Scholar 

  6. E. F. Mason and J. C. Rathmell, Biochim. Biophys. Acta 1813 (4), 645 (2011).

    Article  Google Scholar 

  7. L. Rui, Compr. Physiol. 4 (1), 177 (2014).

    Article  Google Scholar 

  8. M. G. Radaelli, F. De Cobelli, A. Esposito, et al., Oxid Med. Cell. Longev. 2019, 9796175 (2019).

    Google Scholar 

  9. S. Satapati, N. E. Sunny, B. Kucejova, et al., J. Lipid Res. 53, 1080 (2012).

    Article  Google Scholar 

  10. O. N. Voloshchuk and G. P. Kopylchuk, Biomed. Khim. 62 (2), 169 (2016).

    Article  Google Scholar 

  11. F. Fernandes-Lima, L. Monte, F. Nascimento, and B. Gregorio, Tissues Organs 201 (6), 464 (2016).

    Article  Google Scholar 

  12. O. N. Voloshchuk and G. P. Kopylchuk, Biophysics (Moscow) 60 (3), 420 (2015).

    Article  Google Scholar 

  13. Y.-C. Huang, S. Soundar, and A. F. Colman, Prot. Sci. 9, 104 (2000).

    Article  Google Scholar 

  14. P. Cetica, L. Pintos, G. Dalvit, et al., Reproduction 126, 753 (2003).

    Article  Google Scholar 

  15. G. Kiss, C. Konrad, J. Doczi, et al., FASEB J. 27, 2392 (2013).

    Article  Google Scholar 

  16. I. V. Sharova and N. L. Vekshin, Biophysics (Moscow) 49 (5), 814 (2004).

    Google Scholar 

  17. R. Vatrinet, G. Leone, M. De Luise, et al., Cancer Metab. 5, 3 (2017).

    Article  Google Scholar 

  18. M. J. Kumar, D. G. Nicholls, and J. K. Andersen, J. Biol. Chem. 278, 46432 (2003).

    Article  Google Scholar 

  19. G. E. Gibson, J. P. Blass, M. F. Beal, and V. Bunik, Mol. Neurobiol. 31 (1-3), 43 (2005).

    Article  Google Scholar 

  20. S. M. M. Ragab, S. Kh. A. Elghaffar, T. H. El-Metwally, et al., Lipids Health Dis. 14, 83 (2015).

    Article  Google Scholar 

  21. K. Prasad and I. Dhar, Int. J. Angiol. 23 (4), 217 (2014).

    Article  Google Scholar 

Download references

Funding

This work was performed as part of the Biochemical and Laser Polarimetric Parameters for Integrated Prediction of Metabolic Disorders research project, State registration ID 0119U100717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Voloshchuk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of the Welfare of Animals

Manipulations with animals were carried out with regard for the principles of the World Medical Association Declaration of Helsinki of 1964 with amendments of 1975, 1983, and 1989. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Translated by Victor Gulevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshchuk, O.N., Kopylchuk, G.P. & Tazirova, K.A. The Features of Energy Metabolism in Hepatocytes of Rats that Receive Diets with Different Nutrient Contents. BIOPHYSICS 65, 268–271 (2020). https://doi.org/10.1134/S000635092002027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092002027X

Navigation