Skip to main content
Log in

Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain

  • Original Article
  • Published:
Lipids

Abstract

The membrane phospholipid composition in mammalian brain can be modified either by nutrients such as dietary fatty acids, or by certain toxic substances such as methylmercury (MeHg), leading to various biological and toxic effects. The present study evaluated the effects of eicosapentaenoic acid (EPA) and MeHg on the composition of the two most abundant membrane phospholipid classes, i.e., phosphatidylcholines (PtdCho) and phosphatidylethanolamines (PtdEtn), in mouse brain by using a two-level factorial design. The intact membrane PtdCho and PtdEtn species were analyzed by liquid chromatography–mass spectrometry. The effects of EPA and MeHg on the PtdCho and PtdEtn composition were evaluated by principal component analysis and ANOVA. The results showed that EPA and MeHg had different effects on the composition of membrane PtdCho and PtdEtn species in brain, where EPA showed strongest impact. EPA led to large reductions in the levels of arachidonic acid (ARA)-containing PtdCho and PtdEtn species in brain, while MeHg tended to elevate the levels of ARA-containing PtdCho and PtdEtn species. EPA also significantly increased the levels of PtdCho and PtdEtn species with n-3 fatty acids. Our results indicate that EPA may to some degree counteract the alterations of the PtdCho and PtdEtn pattern induced by MeHg, and thus alleviate the MeHg neurotoxicity in mouse brain through the inhibition of ARA-derived pro-inflammatory factors. These results may assist in the understanding of the interaction between MeHg, EPA and phospholipids, as well as the risk and benefits of a fish diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

CerPCho:

Sphingomyelin

DHA:

Docosahexaenoic acid

EFSA:

European food safety authority

EPA:

Eicosapentaenoic acid

LC–MS:

Liquid chromatography–mass spectrometry

LSSR:

Least squares spectral resolution

LTB4 :

Leukotriene B4

MeHg:

Methylmercury

PCA:

Principal component analysis

PGE2 :

Prostaglandin E2

PLA2 :

Phospholipase A2

PtdCho:

Phosphatidylcholines

PtdEtn:

Phosphatidylethanolamines

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

TWI:

Tolerable weekly intake

References

  1. He K, Song YQ, Daviglus ML, Liu K, Van Horn L, Dyer AR, Greenland P (2004) Accumulated evidence on fish consumption and coronary heart disease mortality—a meta-analysis of cohort studies. Circulation 109:2705–2711

    Article  PubMed  Google Scholar 

  2. Kim MK, Zoh KD (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 45:335–343

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li P, Feng X, Qiu G (2010) Methylmercury exposure and health effects from rice and fish consumption: a review. Int J Environ Res Public Health 7:2666–2691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269F

    Article  PubMed  PubMed Central  Google Scholar 

  5. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2012) Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 12:2985

    Google Scholar 

  6. Dellatte E, Brambilla G, Miniero R, Abete MC, Orletti R, Chessa G, Ubaldi A, Chiaravalle E, Tiso M, Ferrari A (2014) Individual methylmercury intake estimates from local seafood of the Mediterranean sea, in Italy. Regul Toxicol Pharmacol 69:105–112

    Article  PubMed  CAS  Google Scholar 

  7. Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55:197–203

    Article  PubMed  CAS  Google Scholar 

  8. Atchison WD, Hare MF (1994) Mechanisms of methylmercury-induced neurotoxicity. Faseb J 8:622–629

    PubMed  CAS  Google Scholar 

  9. Verity MA, Sarafian T, Pacifici EHK, Sevanian A (1994) Phospholipase A2 stimulation by methyl mercury in neuron culture. J Neurochem 62:705–714

    Article  PubMed  CAS  Google Scholar 

  10. Shanker G, Mutkus LA, Walker SJ, Aschner M (2002) Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Mol Brain Res 106:1–11

    Article  PubMed  CAS  Google Scholar 

  11. Calder PC (2006) n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505s–1519s

    PubMed  CAS  Google Scholar 

  12. Lorenz R, Spengler U, Fischer S, Duhm J, Weber PC (1983) Platelet function, thromboxane formation and blood pressure control during supplementation of the Western diet with cod liver oil. Circulation 67:504–511

    Article  PubMed  CAS  Google Scholar 

  13. Du ZY, Zhang J, Wang C, Li L, Man Q, Lundebye AK, Froyland L (2012) Risk-benefit evaluation of fish from Chinese markets: nutrients and contaminants in 24 fish species from five big cities and related assessment for human health. Sci Total Environ 416:187–199

    Article  PubMed  CAS  Google Scholar 

  14. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  PubMed  CAS  Google Scholar 

  15. Khuu Thi-Dinh KL, Demarne Y, Nicolas C, Lhuillery C (1990) Effect of dietary fat on phospholipid class distribution and fatty acid composition in rat fat cell plasma membrane. Lipids 25:278–283

    Article  PubMed  CAS  Google Scholar 

  16. Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106:1–29

    Article  PubMed  CAS  Google Scholar 

  17. Connor WE, Neuringer M, Lin DS (1990) Dietary-effects on brain fatty-acid composition—the reversibility of n-3 fatty-acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of Rhesus-monkeys. J Lipid Res 31:237–247

    PubMed  CAS  Google Scholar 

  18. Homan R, Anderson MK (1998) Rapid separation and quantitation of combined neutral and polar lipid classes by high-performance liquid chromatography and evaporative light-scattering mass detection. J Chromatogr B Biomed Sci Appl 708:21–26

    Article  PubMed  CAS  Google Scholar 

  19. Lutzke BS, Braughler JM (1990) An improved method for the identification and quantitation of biological lipids by HPLC using laser light-scattering detection. J Lipid Res 31:2127–2130

    PubMed  CAS  Google Scholar 

  20. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, Halver JE, Puskas LG (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA 101:10931–10936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Martinez M, Mougan I (1998) Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71:2528–2533

    Article  PubMed  CAS  Google Scholar 

  22. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  PubMed  CAS  Google Scholar 

  23. Tiemeier H, van Tuijl HR, Hofman A, Kiliaan AJ, Breteler MMB (2003) Plasma fatty acid composition and depression are associated in the elderly: the rotterdam study. Am J Clin Nutr 78:40–46

    PubMed  CAS  Google Scholar 

  24. Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425

    Article  PubMed  Google Scholar 

  25. Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA (2011) Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res 50:313–330

    Article  PubMed  CAS  Google Scholar 

  26. Wang L, Folsom AR, Eckfeldt JH (2003) Plasma fatty acid composition and incidence of coronary heart disease in middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 107:E7013–E7013

    Google Scholar 

  27. Xia JD, Yi LZ, Liu NA, Wei X, Cao DS, Li HD, Fan W, Zhang W, Wang DS, Liang YZ (2012) Human plasma metabolic profiles of coronary heart disease by gas chromatography–mass spectrometry with Monte Carlo tree approach. Anal Lett 45:2185–2197

    Article  CAS  Google Scholar 

  28. Foot M, Cruz TF, Clandinin MT (1982) Influence of dietary-fat on the lipid-composition of rat-brain synaptosomal and microsomal-membranes. Biochem J 208:631–640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Belury MA, KempaSteczko A (1997) Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids 32:199–204

    Article  PubMed  CAS  Google Scholar 

  30. Field CJ, Ryan EA, Thomson ABR, Clandinin MT (1990) Diet fat composition alters membrane phospholipid-composition, insulin binding, and glucose-metabolism in adipocytes from control and diabetic animals. J Biol Chem 265:11143–11150

    PubMed  CAS  Google Scholar 

  31. Stangl GI (2000) High dietary levels of a conjugated linoleic acid mixture alter hepatic glycerophospholipid class profile and cholesterol-carrying serum lipoproteins of rats. J Nutr Biochem 11:184–191

    Article  PubMed  CAS  Google Scholar 

  32. Chapman L, Chan HM (2000) The influence of nutrition on methyl mercury intoxication. Environ Health Perspect 108:29–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jones GJ, Nichols PD, Johns RB, Smith JD (1987) The effect of mercury and cadmium on the fatty-acid and sterol composition of the marine diatom asterionella-glacialis. Phytochemistry 26:1343–1348

    Article  CAS  Google Scholar 

  34. Cloëz I, Dumont O, Piciotti M, Bourre JM (1987) Alterations of lipid-synthesis in the normal and dysmyelinating trembler mouse sciatic-nerve by heavy-metals (Hg, Pb, Mn, Cu, Ni). Toxicology 46:65–71

    Article  PubMed  Google Scholar 

  35. Bourre JM, Dumont O (1985) Changes in fatty-acid elongation in developing mouse-brain by mercury—comparison with other metals. Toxicol Lett 25:19–23

    Article  PubMed  CAS  Google Scholar 

  36. Von Schacky C, Fischer S, Weber PC (1985) Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest 76:1626–1631

    Article  Google Scholar 

  37. Calder PC (2002) Dietary modification of inflammation with lipids. P Nutr Soc 61:345–358

    Article  CAS  Google Scholar 

  38. Mazerik JN, Hagele T, Sherwani S, Ciapala V, Butler S, Kuppusamy ML, Hunter M, Kuppusamy P, Marsh CB, Parinandi NL (2007) Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells. Int J Toxicol 26:553–569

    Article  PubMed  CAS  Google Scholar 

  39. Mazerik JN, Mikkilineni H, Kuppusamy VA, Steinhour E, Peltz A, Marsh CB, Kuppusamy P, Parinandi NL (2007) Mercury activates phospholipase A2 and induces formation of arachidonic acid metabolites in vascular endothelial cells. Toxicol Mech Method 17:541–557

    Article  CAS  Google Scholar 

  40. Grotto D, Vicentini J, Angeli JPF, Latorraca EF, Monteiro PAP, Barcelos GRM, Somacal S, Emanuelli T, Barbosa F (2011) Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicol Env Safe 74:487–493

    Article  CAS  Google Scholar 

  41. Jin XL, Lok E, Bondy G, Caldwell D, Mueller R, Kapal K, Armstrong C, Taylor M, Kubow S, Mehta R, Chan HM (2007) Modulating effects of dietary fats on methylmercury toxicity and distribution in rats. Toxicology 230:22–44

    Article  PubMed  CAS  Google Scholar 

  42. Kaur P, Heggland I, Aschner M, Syversen T (2008) Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures. Neurotoxicology 29:978–987

    Article  PubMed  CAS  Google Scholar 

  43. Nøstbakken OJ, Bredal IL, Olsvik PA, Huang TS, Torstensen BE (2012) Effect of marine omega 3 fatty acids on methylmercury-induced toxicity in fish and mammalian cells in vitro. J Biomed Biotechnol 2012:1–13

    Article  CAS  Google Scholar 

  44. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  45. Zeng YX, Mjøs SA, Meier S, Lin CC, Vadla R (2013) Least squares spectral resolution of liquid chromatography–mass spectrometry data of glycerophospholipids. J Chromatogr A 1280:23–34

    Article  PubMed  CAS  Google Scholar 

  46. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  PubMed  CAS  Google Scholar 

  47. Vernooij EAAM, Brouwers JFHM, Kettenes-van den Bosch JJ, Crommelin DJA (2002) RP-HPLC/ESI-MS determination of acyl chain positions in phospholipids. J Sep Sci 25:285–289

    Article  CAS  Google Scholar 

  48. Johansson E, Wold S, Sjodin K (1984) Minimizing effects of closure on analytical data. Anal Chem 56:1685–1688

    Article  Google Scholar 

  49. WHO, Methymercury (2000) Safety evaluation of certain food additives and contaminants. Joint FAO/WHO expert committee on food additives, food additives series, World Health Organization, Geneva.

  50. Vandewater LJ, Racz WJ, Norris AR, Buncel E (1983) Methylmercury distribution, metabolism, and neurotoxicity in the mouse brain. Can J Physiol Pharmacol 61:1487–1493

    Article  PubMed  CAS  Google Scholar 

  51. Zhang J, Miyamoto K, Hashioka S, Hao HP, Murao K, Saido TC, Nakanishi H (2003) Activation of mu-calpain in developing cortical neurons following methylmercury treatment. Brain Res Dev Brain Res 142:105–110

    Article  PubMed  CAS  Google Scholar 

  52. Du ZY, Ma T, Liaset B, Keenan AH, Araujo P, Lock EJ, Demizieux L, Degrace P, Froyland L, Kristiansen K, Madsen L (2013) Dietary eicosapentaenoic acid supplementation accentuates hepatic triglyceride accumulation in mice with impaired fatty acid oxidation capacity. BBA-Mol Cell Biol L 1831:291–299

    CAS  Google Scholar 

  53. Philbrick DJ, Mahadevappa VG, Ackman RG, Holub BJ (1987) Ingestion of fish oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) affects fatty acid compositions of individual phospholipids of rat brain, sciatic nerve and retina. J Nutr 117:1663–1670

    PubMed  CAS  Google Scholar 

  54. Gibney MJ, Hunter B (1993) The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur J Clin Nutr 47:255–259

    PubMed  CAS  Google Scholar 

  55. Kaever V, Goppeltstrube M, Resch K (1988) Enhancement of eicosanoid synthesis in mouse peritoneal-macrophages by the organic mercury compound thimerosal. Prostaglandins 35:885–902

    Article  PubMed  CAS  Google Scholar 

  56. Pecanha FM, Wiggers GA, Briones AM, Perez-Giron JV, Miguel M, Garcia-Redondo AB, Vassallo DV, Alonso MJ, Salaices M (2010) The role of cyclooxygenase (cox)-2 derived prostanoids on vasoconstrictor responses to phenylephrine is increased by exposure to low mercury concentration. J Physiol Pharmacol 61:29–36

    PubMed  CAS  Google Scholar 

  57. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscl Throm Vas 31:986–1000

    Article  CAS  Google Scholar 

  58. El-Demerdash FM (2001) Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B 36:489–499

    Article  PubMed  CAS  Google Scholar 

  59. Hussain S, Rodgers DA, Duhart HM, Ali SF (1997) Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. J Environ Sci Health B 32:395–409

    Article  PubMed  CAS  Google Scholar 

  60. Nagashima K (1997) A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis. Toxicol Pathol 25:624–631

    Article  PubMed  CAS  Google Scholar 

  61. Kunimoto M (1994) Methylmercury induces apoptosis of rat cerebellar neurons in primary culture. Biochem Biophys Res Commun 204:310–317

    Article  PubMed  CAS  Google Scholar 

  62. Nagashima K, Fujii Y, Tsukamoto T, Nukuzuma S, Satoh M, Fujita M, Fujioka Y, Akagi H (1996) Apoptotic process of cerebellar degeneration in experimental methylmercury intoxication of rats. Acta Neuropathol 91:72–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lise Madsen for her constructive advices during experimental design and thank Åse Heltveit for help during the animal trial.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Yu Du or Svein Are Mjøs.

Ethics declarations

Funding sources

This work was financially supported by grants from the Norwegian Research Council to NIFES (Project No. 186908 and 199626).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, YX., Du, ZY., Mjøs, S.A. et al. Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain. Lipids 51, 61–73 (2016). https://doi.org/10.1007/s11745-015-4087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4087-8

Keywords

Navigation