Skip to main content
Log in

Immobilization of Lipid Substrates: Application on Phospholipase A2 Determination

  • Methods
  • Published:
Lipids

Abstract

The purpose of the study was to assess a fluorimetric assay for the determination of total phospholipase A2 (PLA2) activity in biological samples introducing the innovation of immobilized substrates on crosslinked polymeric membranes. The immobilized C12-NBD-PtdCho, a fluorescent analogue of phosphatidylcholine, exhibited excellent stability for 3 months at 4 °C and was not desorbed in the aqueous reaction mixture during analysis. The limit of detection was 0.5 pmol FA (0.2 pg) and the linear part of the response curve extended from 1 up to 190 nmol FA/h/mL sample. The intra- and inter-day relative standard deviations (%RSD), were ≤6 and ≤9 %, respectively. Statistical comparison with other fluorescent methods showed excellent correlation and agreement. Semiempirical calculations showed a fair amount of electrostatic interaction between the NBD-labeled substrate and the crosslinked polyvinyl alcohol with the styryl pyridinium residues (PVA-SbQ) material, from the plane of which, the sn-2 acyl chain of the phospholipid stands out and is accessible by PLA2. Atomic Force Microscopy revealed morphological alterations of the immobilized substrate after the reaction with PLA2. Mass spectrometry showed that only C12-NBD-FA, the PLA2 hydrolysis product, was detected in the reaction mixture, indicating that PLA2 recognizes PVA-SbQ/C12-NBD-PtdCho as a surface to perform catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ARDS:

Acute respiratory distress syndrome

BAL fluid:

Bronchoalveolar lavage fluid

BSA:

Bovine serum albumin

C12-NBD-FA:

12-[(7-Nitro-2-1,3-benzoxadiazol-4-yl)amino}dodecanoic acid

C12-NBD-PtdCho:

1-Palmitoyl-2-{12-[(7-nitro-2-1,3benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-phosphocholine

C6-NBD-PtdCho:

1-Palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine

EDTA:

Ethylenediaminetetraacetic acid

FA:

Fatty acid

HPLC:

High performance liquid chromatography

MS:

Mass spectrometry

PAF:

Platelet activating factor

PLA2 :

Phospholipase A2

PVA-SbQ:

Photocrosslinkable polyvinyl alcohol with steryl pyridinium residues

RSD:

Relative standard deviation

XRD:

X-ray diffraction analysis

References

  1. Gijon MA, Leslie CC (1999) Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol 65:330–336

    CAS  PubMed  Google Scholar 

  2. Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett 531:2–6

    Article  CAS  PubMed  Google Scholar 

  3. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2: classification and characterization. Biochim Biophys 1488:1–19

    Article  CAS  Google Scholar 

  4. Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism and signaling. J Lipid Res 50:237–242

    Article  Google Scholar 

  5. Nakos G, Malamou-Mitsi VD, Lachana A, Karassavoglou A, Kitsiouli E, Agnandi N, Lekka ME (2002) Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med 30:1488–1494

    Article  CAS  PubMed  Google Scholar 

  6. Kostopanagiotou G, Routsi C, Smyrniotis V, Lekka ME, Kitsiouli E, Arkadopoulos N, Nakos G (2003) Alterations in bronchoalveolar lavage fluid during ischemia-induced acute hepatic failure in the pig. Hepatology 37:1130–1138

    Article  CAS  PubMed  Google Scholar 

  7. Nakos G, Kitsiouli E, Hatzidaki E, Koulouras V, Touqui L, Lekka ME (2005) Phospholipases A2 and platelet-activating-factor acetylhydrolase in patients with acute respiratory distress syndrome. Crit Care Med 33:772–779

    Article  CAS  PubMed  Google Scholar 

  8. Nevalainen TJ (2003) Serum phospholipases A2 in inflammatory diseases. Clin Chem 39:2453–2459

    Google Scholar 

  9. Nakos G, Pneumatikos J, Tsangaris H, Tellis C, Lekka ME (1997) Protein and phospholipids in BAL from patients with hydrostatic pulmonary edema. Am J Respir Crit Care Med 155:945–951

    Article  CAS  PubMed  Google Scholar 

  10. Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB (1990) Interfacial catalysis: the mechanism of phospholipase A2. Science 250:1541–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Berg OG, Yu BJ, Rogers J, Jain MK (1991) Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants. Biochemistry 30:7283–7297

    Article  CAS  PubMed  Google Scholar 

  12. Kitsiouli EI, Nakos G, Lekka ME (1999) Differential determination of phospholipase A(2) and PAF-acetylhydrolase in biological fluids using fluorescent substrates. J Lipid Res 40:2346–2356

    CAS  PubMed  Google Scholar 

  13. Thuren T, Vertanen JA, Lalla M, Kinnunen PKJ (1985) Fluorimetric assay for phospholipase A2 in serum. Clin Chem 31:714–717

    CAS  PubMed  Google Scholar 

  14. Karkabounas A, Kitsiouli EI, Nakos G, Lekka ME (2011) HPLC-fluorimetric assay of phospholipase A2. Application to biological samples with high protein content and various reaction conditions. J Chromatogr B 879:1557–1564

    Article  CAS  Google Scholar 

  15. Tsiafoulis CG, Florou AB, Trikalitis PN, Bakas T, Prodromidis MI (2005) Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel/polyvinyl alcohol composite films: application in the development of amperometric biosensors. Electrochem Commun 7:781–788

    Article  CAS  Google Scholar 

  16. King CHR, Margolin AL (1993) Immobilization of substrates in enzyme–catalyzed hydrolysis. Tetrahedron Asymmetry 4:943–946

    Article  CAS  Google Scholar 

  17. Ong S, Cai SJ, Bernal C, Rhee D, Qiu X, Pidgeon C (1994) Phospholipid immobilization on solid surfaces. Anal Chem 66:782–792

    Article  CAS  PubMed  Google Scholar 

  18. Esker AR, Brode PF III, Rubingh DN, Rauch DS, Yu H, Gast AP, Robertson CR, Trigiante G (2000) Protease activity on an immobilized substrate modified by polymers: subtilisin BPN. Langmuir 16:2198–2206

    Article  CAS  Google Scholar 

  19. Halling PJ, Ulijn RV, Flitsch SL (2005) Understanding enzyme action on immobilized substrates. Curr Opin Biotechnol 16:385–392

    Article  CAS  PubMed  Google Scholar 

  20. Pantazi D, Drougas E, Loppinet B, Tellis C, Kosmas AM, Lekka ME (2006) Hydrolysis of phospholipase D of phospholipids in solution state or adsorbed on a silica matrix. Chem Phys Lip 139:20–31

    Article  CAS  Google Scholar 

  21. Rouillon R, Euzet P, Carpentier R (2004) Stabilization of photosynthetic materials. Method Mol Biol 274:261–269

    CAS  Google Scholar 

  22. Barthelmebs L, Carpentier R, Rouillon R (2011) Physical and chemical immobilization methods of photosynthetic materials. Method Mol Biol 684:247–256

    Article  CAS  Google Scholar 

  23. Laberge D, Rouillon R, Carpentier R (2000) Comparative study of thylakoid membranes sensitivity for herbicide detection after physical or chemical immobilization. Enzyme Microb Technol 26:332–336

    Article  CAS  PubMed  Google Scholar 

  24. Tsiafoulis CG, Prodromidis MI, Karayannis MI (2004) Development of an amperometric biosensing method for the determination of L-fucose in pretreated urine. Biosens Bioelectron 20:620–627

    Article  CAS  PubMed  Google Scholar 

  25. Setwart JJP (1989) Optimazation of parameters for semiempirical methods. I Methods. J Comput Chem 10:209–220

    Article  Google Scholar 

  26. Ichimura K, Iwata S, Mochizuki S, Ohmi M, Adachi D (2012) Revisit to the photocrosslinking behavior of PVA-SbQ as a water-soluble photopolymer with anomalously low contents of quaterized stilbazol side chains. J Polym Sci A Polym Chem 50:4094–4102

    Article  CAS  Google Scholar 

  27. Mazères S, Schram V, Tocanne JF, Lopez A (1996) 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J 71:327–335

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mukherjee S, Raghuraman H, Dasgupta S, Chattopadhyay A (2004) Organization and dynamics of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: a fluorescence approach. Chem Phys Lipid 127:91–101

    Article  CAS  Google Scholar 

  29. Filipe HA, Moreno MJ, Loura LM (2011) Interaction of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled fatty amines with 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine bilayers: a molecular dynamics study. J Phys Chem B 115:10109–10119

    Article  CAS  PubMed  Google Scholar 

  30. Loura LM, Fernandes F, Fernandes AC, Ramalho JP (2008) Effects of fluorescent probe NBD-PC on the structure, dynamics and phase transition of DPPC. A molecular dynamics and differential scanning calorimetry study. Biochim Biophys Acta 1778:491–501

    Article  CAS  PubMed  Google Scholar 

  31. Buitrago-Rey R, Olarte J, Gomez-Marin JE (2002) Evaluation of two inhibitors of invasion: lY311727 [3-(3-acetamide-1-benzyl-2-ethyl-indolyl-5-oxy)propane phosphonic acid] and AEBSF [4-(2-aminoethyl)-benzenesulphonyl fluoride] in acute murine toxoplasmosis. J Antimicrob Chemother 49:871–874

    Article  CAS  PubMed  Google Scholar 

  32. Martin OC, Pagano RE (1986) Normal and reverse-phase HPLC separations of fluorescent (NBD) lipids. Anal Biochem 159:101–108

    Article  CAS  PubMed  Google Scholar 

  33. Wu H, Yu L, Tong Y, Ge A, Yau S, Osawa M, Ye S (2013) Enzyme-catalyzed hydrolysis of the supported phospholipid bilayers studied by atomic force microscopy. Biochim Biophys Acta 1828:642–651

    Article  CAS  PubMed  Google Scholar 

  34. Tatulian SA (2001) Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 50:789–800

    Article  Google Scholar 

  35. Petrovic N, Grove C, Langton PE, Misso NL, Thompson PJ (2001) A simple assay for a human serum phospholipase A2 that is associated with high-density lipoproteins. J Lipid Res 42:1706–1713

    CAS  PubMed  Google Scholar 

  36. Sapirstein A, Spech RA, Witzgall R, Bonventre JV (1996) Cytosolic phospholipase A2 (PLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. J Biol Chem 271:21505–21513

    Article  CAS  PubMed  Google Scholar 

  37. Kitsiouli E, Nakos G, Lekka ME (2009) Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta 1792:941–953

    Article  CAS  PubMed  Google Scholar 

  38. Taverniers I, Loose MD, Bockstaele EV (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends. Anal Chem 23:535

    CAS  Google Scholar 

  39. Lasch J, Willhardt I, Kinder D, Sauer H, Smesny S (2003) Fluorometric assays of phospholipase A2 with three different substrates in biological samples of patients with schizophrenia. Clin Chem Lab Med 41:908–914

    Article  CAS  PubMed  Google Scholar 

  40. Lekka ME, Karkabounas A, University of Ioannina research committee (2011) Immobilization of lipid substrates in order to develop and evaluate a fluorimetric assay for the determination of phospholipase A2 activity in biological samples. Greek Patent Code Nr 1007801

Download references

Acknowledgments

The authors would like to thank the Unit of Environmental, Organic and Biochemical high resolution analysis-ORBITRAP-LC–MS of the University of Ioannina for providing access to the facilities. The authors would like to thank the Confocal Laser Scanning Microscopy Unit of the University of Ioannina for providing access to the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena E. Lekka.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7170 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkabounas, A., Georgiadou, D.G., Argitis, P. et al. Immobilization of Lipid Substrates: Application on Phospholipase A2 Determination. Lipids 50, 1259–1271 (2015). https://doi.org/10.1007/s11745-015-4076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4076-y

Keywords

Navigation