Skip to main content
Log in

Analysis of Fluorescent Ceramide and Sphingomyelin Analogs: A Novel Approach for in Vivo Monitoring of Sphingomyelin Synthase Activity

  • Methods
  • Published:
Lipids

Abstract

A novel sensitive high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was developed for real-time monitoring of relative sphingomyelin synthase (SMS) activity based on the measurement of a fluorescent ceramide (Cer) analog and its metabolite, a fluorescent sphingomyelin (CerPCho) analog, in plasma. Analyses were conducted using HPLC-FLD following a protein precipitation procedure. The chromatographic separations were carried out on an Agilent C18 RP column (150 × 4.6 mm, 5 μm) based on a methanol—0.1 % trifluoroacetic acid aqueous solution (88:12, by vol) elution at a flow-rate of 1 mL/min. The limit of quantification in plasma was 0.05 μM for both the fluorescent Cer analog and its metabolite. Significant differences in the fluorescent Cer analog and its metabolite concentration ratio at 5 min were found between vehicle control group and three D2 (a novel SMS inhibitor) dose groups (P < 0.05). Dose-dependent effects (D2 doses: 0, 2.5, 5, 10 mg/kg) were observed. Our method could be used to detect relative SMS activity in biochemical assays and to screen potential SMS inhibitors in vivo. D2 was found to be a potent SMS inhibitor in vivo, and may have a potential antiatherosclerotic effect, which is under further study. D609 was also selected as another model SMS inhibitor to validate our newly developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

C6-NBD-Cer:

6-((N-(7-nitrobenz-2-oxa-1.3-diazol-4-yl) amino) hexanoyl)-sphingosine

C6-NBD-CerPCho:

N-(6-(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino) hexanoyl)-sphingosine -1-phosphocholine

D2:

(2-(2-(benzyloxy)phenyl)-2-(phenylamino) acetonitrile)

DAG:

Diacylglycerol

HPLC-FLD:

High-performance liquid chromatography-fluorescence detection

PtdCho:

Phosphatidylcholine

CerPCho:

Sphingomyelin

SMS:

Sphingomyelin synthase

D609:

Tricyclodecane-9-yl-xanthogenate

References

  1. Xu F, Ji J, Li L, Chen R, Hu W (2007) Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the “Response-to-injury hypothesis” and the “Inflammation hypothesis”. Med Hypotheses 69:908–912

    Article  PubMed  CAS  Google Scholar 

  2. Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall AR (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 20:2614–2618

    Article  PubMed  CAS  Google Scholar 

  3. Marathe S, Choi Y, Leventhal AR, Tabas I (2000) Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol 20:2607–2613

    Article  PubMed  CAS  Google Scholar 

  4. Guyton JR, Klemp KF (1996) Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol 16:4–11

    Article  PubMed  CAS  Google Scholar 

  5. Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I (1996) Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest 98:1455–1464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Hanada K, Hara T, Nishijima M, Kuge O, Dickson RC, Nagiec MM (1997) A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem 272:32108–32114

    Article  PubMed  CAS  Google Scholar 

  7. Yeboah J, McNamara C, Jiang XC, Tabas I, Herrington DM, Burke GL, Shea S (2010) Association of plasma sphingomyelin levels and incident coronary heart disease events in an adult population: multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 30:628–633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kinnunen PK, Holopainen JM (2002) Sphingomyelinase activity of LDL: a link between atherosclerosis, Cer, and apoptosis? Trends Cardiovas Med 12:37–42

    Article  CAS  Google Scholar 

  9. Li Z, Fan Y, Liu J, Li Y, Huan C, Bui HH, Kuo MS, Park TS, Cao G, Jiang XC (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:1577–1584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Liu J, Huan C, Chakraborty M, Zhang H, Lu D, Kuo MS, Cao G, Jiang XC (2009) Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res 105:295–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Liu J, Zhang H, Li Z, Hailemariam TK, Chakraborty M, Jiang K, Qiu D, Bui HH, Peake DA, Kuo MS, Wadgaonkar R, Cao G, Jiang XC (2009) Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arterioscler Thromb Vasc Biol 29:850–856

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110:3465–3471

    Article  PubMed  CAS  Google Scholar 

  13. Dong J, Liu J, Lou B, Li Z, Ye X, Wu M, Jiang XC (2006) Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J Lipid Res 47:1307–1314

    Article  PubMed  CAS  Google Scholar 

  14. Ding T, Li Z, Hailemariam T, Mukherjee S, Maxfield FR, Wu MP, Jiang XC (2008) SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglyCerol metabolism, and cell apoptosis. J Lipid Res 49:376–385

    Article  PubMed  CAS  Google Scholar 

  15. Hailemariam TK, Huan C, Liu J, Li Z, Roman C, Kalbfeisch M, Bui HH, Peake DA, Kuo MS, Cao G, Wadgaonkar R, Jiang XC (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 28:1519–1526

    Article  PubMed  CAS  Google Scholar 

  16. Li Z, Hailemariam TK, Zhou H, Li Y, Duckworth DC, Peake DA, Zhang Y, Kuo MS, Cao G, Jiang XC (2007) Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta 1771:1186–1194

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Liu G, Wang W, Sun G, Ma X, Liu Z, Yang J (2008) Nystatin interferes with the effects of N-methyl-N′-nitro-N-nitrosoguanidine on sphingolipid metabolism in human FL cells. Lipids 43(9):867–875

    Article  PubMed  CAS  Google Scholar 

  18. Tafesse FG, Huitema K, Hermansson M, van der Poel S, van den Dikkenberg J, Uphoff A, Somerharju P, Holthuis JC (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282:17537–17547

    Article  PubMed  CAS  Google Scholar 

  19. Yeang C, Varshney S, Wang R, Zhang Y, Ye D, Jiang XC (2008) The domain responsible for sphingomyelin synthase (SMS) activity. Biochim Biophys Acta 1781:610–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Luberto C, Hannun YA (1998) Sphingomyelin synthase, a potential regulator of intracellular levels of Cer and diacylglyCerol during SV40 transformation—does sphingomyelin synthase account for the putative, phosphatidylcholine-specific phospholipase C? J Biol Chem 273:14550–14559

    Article  PubMed  CAS  Google Scholar 

  21. Amtmann E (1996) The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. Drugs Exp Clin Res 22:287–294

    PubMed  CAS  Google Scholar 

  22. Tschaikowsky K, Schmidt J, Meisner M (1998) Modulation of mouse endotoxin shock by inhibition of phosphatidylcholine-specific phospholipase C. J Pharmacol Exp Ther 285:800–804

    PubMed  CAS  Google Scholar 

  23. Adibhatla RM, Hatcher JF, Gusain A (2012) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 37:671–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Wang N, Lv X, Su L, Zhao B, Zhang S, Miao J (2006) D609 blocks cell survival and induces apoptosis in neural stem cells. Bioorg Med Chem Lett 16:4780–4783

    Article  PubMed  CAS  Google Scholar 

  25. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-κB by phosphatidylcholine-specific phospholipase-C-induced acidic sphingomyelin breakdown. Cell 71:765–776

    Article  PubMed  CAS  Google Scholar 

  26. Gusain A, Hatcher JF, Adibhatla RM, Wesley UV, Dempsey RJ (2012) Anti-proliferative effects of tricyclodecan-9-yl-xanthogenate (D609) involve cer and cell cycle inhibition. Mol Neurobiol 45:455–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Deng X, Sun H, Gao X, Gong H, Lu W, Chu Y, Zhou L, Ye D (2012) Development, validation, and application of a novel method for mammalian sphingomyelin synthase activity measurement. Anal Lett 45:1581–1589

    Article  CAS  Google Scholar 

  28. Deng X, Lin F, Zhang Y, Li Y, Zhou L, Lou B, Li Y, Dong J, Ding T, Jiang X, Wang R, Ye D (2013) Identification of small molecule sphingomyelin synthase inhibitors. Eur J Med Chem 73C:1–7

    Google Scholar 

  29. Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Muehle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P (2011) Identification of novel functional inhibitors of acid sphingomyelinase. PLOS One 6(8):e23852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Lee DH, Kim SH, Ahn KH, Kim SK, Choi JM, Ji JE, Won JH, Park YH, Lim C, Kim S, Kim DK (2011) Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch Pharm Res 34:229–236

    Article  PubMed  CAS  Google Scholar 

  31. Wang S-H, Yang W-B, Liu Y-C, Chiu Y-H, Chen C-T, Kao P-F, Lin C-M (2011) A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. J Lipid Res 52:471–479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Mehta G, Modugu NR (2013) Concise approach to the carbocyclic core of the naturally occurring sphingomyelinase inhibitor scyphostatin. J Org Chem 78:3367–3373

    Article  PubMed  CAS  Google Scholar 

  33. Zama K, Mitsutake S, Watanabe K, Okazaki T, Igarashi Y (2012) A sensitive cell-based method to screen for selective inhibitors of SMS1 or SMS2 using HPLC and a fluorescent substrate. Chem Phys Lipids 165:760–768

    Article  PubMed  CAS  Google Scholar 

  34. Fischbeck A, Krueger M, Blaas N, Humpf H-U (2009) Analysis of sphingomyelin in meat based on hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS). J Agric Food Chem 57:9469–9474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the grant of the Science and Technology Research Key Projects, the Science and Technology Commission of Shanghai Municipality (No.11431920102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengneng Cheng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Li, X., Hu, S. et al. Analysis of Fluorescent Ceramide and Sphingomyelin Analogs: A Novel Approach for in Vivo Monitoring of Sphingomyelin Synthase Activity. Lipids 49, 1071–1079 (2014). https://doi.org/10.1007/s11745-014-3940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3940-5

Keywords

Navigation