Skip to main content
Log in

Identification and evaluation of neutral sphingomyelinase 2 inhibitors

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Sphingomyelinase catalyzes the hydrolysis of sphingomyelin to generate ceramide, an important molecule involved in the regulation of various cellular responses. In this study, we partially purified the neutral sphingomyelinase2 (nSMase2) and identified the inhibitors, d-lyxophytosphingosine and d-arabino-phytosphingosine, which have an inhibitory effect on nSMase2 in a concentration-dependent manner. A Dixon plot of each phytosphingosines revealed their probable inhibitory pattern, i.e., apparent competitive inhibition. These compounds did not inhibit the Mg2+-independent neutral SMase activity, although the known nSMase2 inhibitor, GW4869, showed inhibitory effects on Mg2+-independent neutral SMase activity. Further, the two phytosphingosines specifically inhibited the ceramide generation regulated by nSMase2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R., Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell, 82, 405–414 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Carre, J. B., Morand, O., Homayoun, P., Roux, F., Bourre, J. M., and Baumann, N., Purified rat brain microvessels exhibit both acid and neutral sphingomyelinase activities. J. Neurochem., 52, 1294–1299 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil, P., Aibel, L., and Chao, M. V., Central glial and neuronal populations display differential sensitivity to ceramide-dependent cell death. J. Neurosci. Res., 43, 382–389 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, G., Ziemba, S., Drivas, A., and Ledeen, R. W., Myelin contains neutral sphingomyelinase activity that is stimulated by tumor necrosis factor-alpha. J. Neurosci. Res., 50, 466–476 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, S. and Ghosh, N., Neutral sphingomyelinase from human urine. Purification and preparation of monospecific antibodies. J. Biol. Chem., 264, 12554–12561 (1989).

    PubMed  CAS  Google Scholar 

  • Dobrowsky, R. T., Jenkins, G. M., and Hannun, Y. A., Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J. Biol. Chem., 270, 22135–22142 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Fiebich, B. L., Lieb, K., Berger, M., and Bauer, J., Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells. J. Neuroimmunol., 63, 207–211 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi, T., Yasuda, S., Fukasawa, M., Nishijima, M., and Hanada, K., Reconstitution of ATP- and cytosoldependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells. J. Biol. Chem., 275, 29938–29945 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y. A., The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem., 269, 3125–3128 (1994).

    PubMed  CAS  Google Scholar 

  • Hofmann, K., Tomiuk, S., Wolff, G., and Stoffel, W., Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc. Natl. Acad. Sci. U. S. A., 97, 5895–5900 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hunot, S., Brugg, B., Ricard, D., Michel, P. P., Muriel, M. P., Ruberg, M., Faucheux, B. A., Agid, Y., and Hirsch, E. C., Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc. Natl. Acad. Sci. U. S. A., 94, 7531–7536 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ito, H., Murakami, M., Furuhata, A., Gao, S., Yoshida, K., Sobue, S., Hagiwara, K., Takagi, A., Kojima, T., Suzuki, M., Banno, Y., Tanaka, K., Tamiya-Koizumi, K., Kyogashima, M., Nozawa, Y., and Murate, T., Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anticancer drug, daunorubicin. Biochim. Biophys. Acta, 1789, 681–690 (2009).

    PubMed  CAS  Google Scholar 

  • Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M., Obeid, L. M., and Hannun, Y. A., Role for ceramide in cell cycle arrest. J. Biol. Chem., 270, 2047–2052 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kalen, A., Borchardt, R. A., and Bell, R. M., Elevated ceramide levels in GH4C1 cells treated with retinoic acid. Biochim. Biophys. Acta, 1125, 90–96 (1992).

    PubMed  CAS  Google Scholar 

  • Kim, S. K., Ahn, K. H., Jeon, H. J., Lee, D. H., Jung, S. Y., Jung, K. M., and Kim, D. K., Purification of neutral sphingomyelinase 2 from bovine brain and its calcium-dependent activation. J. Neurochem., 112, 1088–1097 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Kroesen, B. J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., De Leij, L., and Hannun, Y. A., Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem., 276, 13606–13614 (2001).

    PubMed  CAS  Google Scholar 

  • Krut, O., Wiegmann, K., Kashkar, H., Yazdanpanah, B., and Kronke, M., Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J. Biol. Chem., 281, 13784–13793 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Kubota, M., Kitahara, S., Shimasaki, H., and Ueta, N., Accumulation of ceramide in ischemic human brain of an acute case of cerebral occlusion. Jpn. J. Exp. Med., 59, 59–64 (1989).

    PubMed  CAS  Google Scholar 

  • Lee, J. S., Min, D. S., Park, C., Park, C. S., and Cho, N. J., Phytosphingosine and C2-phytoceramide induce cell death and inhibit carbachol-stimulated phospholipase D activation in Chinese hamster ovary cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor. FEBS Lett., 499, 82–86 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. T., Xu, J., Lee, J. M., Ku, G., Han, X., Yang, D. I., Chen, S., and Hsu, C. Y., Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J. Cell Biol., 164, 123–131 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Hassler, D. F., Smith, G. K., Weaver, K., and Hannun, Y. A., Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain. J. Biol. Chem., 273, 34472–34479 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Luberto, C., Hassler, D. F., Signorelli, P., Okamoto, Y., Sawai, H., Boros, E., Hazen-Martin, D. J., Obeid, L. M., Hannun, Y. A., and Smith, G. K., Inhibition of tumor necrosis factorinduced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J. Biol. Chem., 277, 41128–41139 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Macphee, I. J. and Barker, P. A., Brain-derived neurotrophic factor binding to the p75 neurotrophin receptor reduces TrkA signaling while increasing serine phosphorylation in the TrkA intracellular domain. J. Biol. Chem., 272, 23547–23551 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H., Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet, 83, 30–42 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Milhas, D., Clarke, C. J., and Hannun, Y. A., Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett., 584, 1887–1894 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Nara, F., Tanaka, M., Masuda-Inoue, S., Yamasato, Y., Doi-Yoshioka, H., Suzuki-Konagai, K., Kumakura, S., and Ogita, T., Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J. Antibiot. (Tokyo), 52, 531–535 (1999).

    CAS  Google Scholar 

  • Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A., Programmed cell death induced by ceramide. Science, 259, 1769–1771 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, T., Bell, R. M., and Hannun, Y. A., Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem., 264, 19076–19080 (1989).

    PubMed  CAS  Google Scholar 

  • Okazaki, T., Bielawska, A., Bell, R. M., and Hannun, Y. A., Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem., 265, 15823–15831 (1990).

    PubMed  CAS  Google Scholar 

  • Perry, D. K., Carton, J., Shah, A. K., Meredith, F., Uhlinger, D. J., and Hannun, Y. A., Serine palmitoyltransferase regulates de novo ceramide generation during etoposide induced apoptosis. J. Biol. Chem., 275, 9078–9084 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Riley, R. T., Enongene, E., Voss, K. A., Norred, W. P., Meredith, F. I., Sharma, R. P., Spitsbergen, J., Williams, D. E., Carlson, D. B., and Merrill, A. H., Jr., Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ. Health Perspect., 109Suppl 2, 301–308 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sawai, H., Domae, N., Nagan, N., and Hannun, Y. A., Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J. Biol. Chem., 274, 38131–38139 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S. and Merrill, A. H., Jr., Sphingolipid metabolism and cell growth regulation. FASEB J., 10, 1388–1397 (1996).

    PubMed  CAS  Google Scholar 

  • Stoffel, A. and Levine, A. J., Actvation of NF-kappaB by the API2/MALT1 fusions inhibits p53 dependant but not FAS induced apoptosis: a directional link between NF-kappaB and p53. Cell Cycle, 3, 1017–1020 (2004).

    Article  PubMed  Google Scholar 

  • Stoffel, W., Jenke, B., Holz, B., Binczek, E., Gunter, R. H., Knifka, J., Koebke, J., and Niehoff, A., Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am. J. Pathol., 171, 153–161 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W., Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc. Natl. Acad. Sci. U. S. A., 95, 3638–3643 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tomiuk, S., Zumbansen, M., and Stoffel, W., Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J. Biol. Chem., 275, 5710–5717 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., and Obeid, L. M., Role of ceramide in cellular senescence. J. Biol. Chem., 270, 30701–30708 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Bialik, S., Jones, B. E., Iimuro, Y., Kitsis, R. N., Srinivasan, A., Brenner, D. A., and Czaja, M. J., NF-kappaB inactivation converts a hepatocyte cell line TNF-alpha response from proliferation to apoptosis. Am. J. Physiol., 275, C1058–C1066 (1998).

    PubMed  CAS  Google Scholar 

  • Yamaguchi, S. and Suzuki, K., Purification and characterization of sphingomyelinase from human brain. J. Biol. Chem., 252, 3805–3813 (1977).

    PubMed  CAS  Google Scholar 

  • Yoo, H. H., Son, J., and Kim, D. H., Liquid chromatographytandem mass spectrometric determination of ceramides and related lipid species in cellular extracts. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 843, 327–333 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, S., Banno, Y., Nakashima, S., Takenaka, K., Sakai, H., Nishimura, Y., Sakai, N., Shimizu, S., Eguchi, Y., Tsujimoto, Y., and Nozawa, Y., Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J. Biol. Chem., 273, 6921–6927 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Kyong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H., Kim, S.H., Ahn, K.H. et al. Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch. Pharm. Res. 34, 229–236 (2011). https://doi.org/10.1007/s12272-011-0208-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0208-y

Key words

Navigation