Skip to main content
Log in

Anti-proliferative Effects of Tricyclodecan-9-yl-xanthogenate (D609) Involve Ceramide and Cell Cycle Inhibition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 May 2012

Abstract

Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC1 astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G1 phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206–217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adibhatla RM, Hatcher JF, Gusain A (2012) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 37:671–679

    Article  PubMed  CAS  Google Scholar 

  2. Sauer G, Amtmann E, Melber K et al (1984) DNA and RNA virus species are inhibited by xanthates, a class of antiviral compounds with unique properties. Proc Natl Acad Sci 81:3263–3267

    Article  PubMed  CAS  Google Scholar 

  3. Sultana R, Newman SF, Abdul HM et al (2006) Protective effect of D609 against amyloid-β 1-42 induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 84:409–417

    Article  PubMed  CAS  Google Scholar 

  4. Zhou DH, Lauderback CM, Yu T et al (2001) D609 inhibits ionizing radiation-induced oxidative damage by acting as a potent antioxidant. J Pharmacol Exp Ther 298:103–109

    PubMed  CAS  Google Scholar 

  5. Amtmann E (1996) The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. Drugs Exp Clin Res 22:287–294

    PubMed  CAS  Google Scholar 

  6. Chen C, Hu Q, Yan J et al (2007) Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1α and apoptotic genes in a middle cerebral artery occlusion induced focal ischemia rat model. J Neurochem 102:1831–1841

    Article  PubMed  CAS  Google Scholar 

  7. Monick MM, Carter AB, Gudmundsson G et al (1999) A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 162:3005–3012

    PubMed  CAS  Google Scholar 

  8. Zhang F, Zhao G, Dong Z (2001) Phosphatidylcholine-specific phospholipase C and D in stimulation of RAW264.7 mouse macrophage-like cells by lipopolysaccharide. Intl Immunopharmacol 1:1375–1384

    Article  CAS  Google Scholar 

  9. Machleidt T, Kramer B, Adam D et al (1996) Function of the p55 TNF receptor “death domain” mediated by phosphatidylcholine-specific PLC. J Exp Med 184:725–733

    Article  PubMed  CAS  Google Scholar 

  10. Zhang L, Zhao J, Su L et al (2010) D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein E-/- mice. A role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 30:411–418

    Article  PubMed  CAS  Google Scholar 

  11. Larsen EC, Hatcher JF, Adibhatla RM (2007) Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 146:946–961

    Article  PubMed  CAS  Google Scholar 

  12. Yu ZF, Nikolova-Karakashian M, Zhou DH et al (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 15:85–97

    Article  PubMed  CAS  Google Scholar 

  13. Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160

    Article  PubMed  CAS  Google Scholar 

  14. Carrasco S, Merida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    Article  PubMed  CAS  Google Scholar 

  15. Tafesse FG, Ternes P, Holthuis JCM (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281:29421–29425

    Article  PubMed  CAS  Google Scholar 

  16. Huitema K, van den Dikkenberg J, Brouwers JFHM et al (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  PubMed  CAS  Google Scholar 

  17. Luberto C, Hannun YA (1998) SM synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does SM synthase account for the putative PC-specific PLC? J Biol Chem 273:14550–14559

    Article  PubMed  CAS  Google Scholar 

  18. Luberto C, Yoo DS, Suidan HS et al (2000) Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem 275:14760–14766

    Article  PubMed  CAS  Google Scholar 

  19. Riboni L, Viani P, Bassi R et al (2001) Basic fibroblast growth factor-induced proliferation of primary astrocytes. Evidence for the involvement of sphingomyelin biosynthesis. J Biol Chem 276:12797–12804

    Article  PubMed  CAS  Google Scholar 

  20. Byrnes KR, Faden AI (2007) Role of cell cycle proteins in CNS injury. Neurochem Res 32:1799–1807

    Article  PubMed  CAS  Google Scholar 

  21. Wang W, Bu B, Xie M et al (2009) Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 89:1–17

    Article  PubMed  CAS  Google Scholar 

  22. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  PubMed  CAS  Google Scholar 

  23. Adibhatla RM, Hatcher JF (2010) Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 41:206–217

    Article  PubMed  CAS  Google Scholar 

  24. Blasi E, Barluzzi R, Bocchini V et al (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  PubMed  CAS  Google Scholar 

  25. Righi M, Mori L, De Libero G et al (1989) Monokine production by microglial cell clones. Eur J Immunol 19:1443–1448

    Article  PubMed  CAS  Google Scholar 

  26. Raschke WC, Baird S, Ralph P et al (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267

    Article  PubMed  CAS  Google Scholar 

  27. Radany EH, Brenner M, Besnard F et al (1992) Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc Natl Acad Sci 89:6467–6471

    Article  PubMed  CAS  Google Scholar 

  28. Lauderback CM, Drake J, Zhou D et al (2003) Derivatives of xanthic acid are novel antioxidants: application to synaptosomes. Free Radic Res 37:355–365

    Article  PubMed  CAS  Google Scholar 

  29. Bai A, Meier GP, Wang Y et al (2004) Prodrug modification increases potassium tricyclo[5.2.1.02,6]-decan-8-yl dithiocarbonate (D609) chemical stability and cytotoxicity against U937 leukemia cells. J Pharmacol Exp Ther 309:1051–1059

    Article  PubMed  CAS  Google Scholar 

  30. Furuya K, Ginis I, Takeda H et al (2001) Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab 21:226–232

    Article  PubMed  CAS  Google Scholar 

  31. Yang NC, Jeng KC, Ho WM et al (2000) DHEA inhibits cell growth and induces apoptosis in BV-2 cells and the effects are inversely associated with glucose concentration in the medium. J Steroid Biochem Mol Biol 75:159–166

    Article  PubMed  CAS  Google Scholar 

  32. Wang N, Lv X, Su L et al (2006) D609 blocks cell survival and induces apoptosis in neural stem cells. Bioorg Med Chem Lett 16:4780–4783

    Article  PubMed  CAS  Google Scholar 

  33. Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24:131–144

    Article  PubMed  CAS  Google Scholar 

  34. Chiba N, Masuda A, Yoshikai Y et al (2007) Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol 213:126–136

    Article  PubMed  CAS  Google Scholar 

  35. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50:S91–96

    Article  PubMed  Google Scholar 

  36. Luberto C, Kraveka JM, Hannun YA (2002) Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res 27:609–617

    Article  PubMed  CAS  Google Scholar 

  37. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  PubMed  CAS  Google Scholar 

  38. Fukunaga T, Nagahama M, Hatsuzawa K et al (2000) Implication of sphingolipid metabolism in the stability of the Golgi apparatus. J Cell Sci 113(Pt 18):3299–3307

    PubMed  CAS  Google Scholar 

  39. Lipsky NG, Pagano RE (1985) A vital stain for the Golgi apparatus. Science 228:745–747

    Article  PubMed  CAS  Google Scholar 

  40. Abe A, Wu D, Shayman JA et al (1992) Metabolic effects of short-chain ceramide and glucosylceramide on sphingolipids and protein kinase C. Eur J Biochem 210:765–773

    Article  PubMed  CAS  Google Scholar 

  41. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62

    Article  PubMed  Google Scholar 

  42. Ogretmen B, Pettus BJ, Rossi MJ et al (2002) Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem 277:12960–12969

    Article  PubMed  CAS  Google Scholar 

  43. Takeda S, Mitsutake S, Tsuji K et al (2006) Apoptosis occurs via the ceramide recycling pathway in human HaCaT keratinocytes. J Biochem 139:255–262

    Article  PubMed  CAS  Google Scholar 

  44. Barcelo-Coblijn G, Martin ML, de Almeida RF et al (2011) Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci 108:19569–19574

    Article  PubMed  CAS  Google Scholar 

  45. Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8:368–378

    Article  PubMed  CAS  Google Scholar 

  46. Osuga H, Osuga S, Wang F et al (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci 97:10254–10259

    Article  PubMed  CAS  Google Scholar 

  47. Kriz J (2006) Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 18:145–157

    PubMed  CAS  Google Scholar 

  48. Venero JL, Burguillos MA, Brundin P et al (2011) The executioners sing a new song: killer caspases activate microglia. Cell Death Differ 18:1679–1691

    Article  PubMed  CAS  Google Scholar 

  49. Lambertsen KL, Clausen BH, Babcock AA et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    Article  PubMed  CAS  Google Scholar 

  50. Lalancette-Hebert M, Gowing G, Simard A et al (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  PubMed  CAS  Google Scholar 

  51. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  PubMed  CAS  Google Scholar 

  52. Madinier A, Bertrand N, Mossiat C et al (2009) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS ONE 4:e8101

    Article  PubMed  Google Scholar 

  53. Day TW, Wu CH, Safa AR (2009) Etoposide induces protein kinase Cdelta- and caspase-3-dependent apoptosis in neuroblastoma cancer cells. Mol Pharmacol 76:632–640

    Article  PubMed  CAS  Google Scholar 

  54. Lee S, Suk K (2007) Heme oxygenase-1 mediates cytoprotective effects of immunostimulation in microglia. Biochem Pharmacol 74:723–729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH R01 NS063959 and AHA 11GRNT7360066 and resources provided by Veterans Affairs Hospital, Madison, WI. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rao Muralikrishna Adibhatla or Robert J. Dempsey.

Additional information

Anchal Gusain and James F. Hatcher contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusain, A., Hatcher, J.F., Adibhatla, R.M. et al. Anti-proliferative Effects of Tricyclodecan-9-yl-xanthogenate (D609) Involve Ceramide and Cell Cycle Inhibition. Mol Neurobiol 45, 455–464 (2012). https://doi.org/10.1007/s12035-012-8254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8254-0

Keywords

Navigation