Skip to main content
Log in

Separation of the Fatty Acids in Menhaden Oil as Methyl Esters with a Highly Polar Ionic Liquid Gas Chromatographic Column and Identification by Time of Flight Mass spectrometry

  • Original Article
  • Published:
Lipids

Abstract

The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag+-HPLC fractionation and GC-TOF/MS analysis in CI+ mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AOCS:

American Oil Chemists’ Society

CI:

Chemical ionization

CLA:

Conjugated linoleic acid(s)

CPS:

Cyanopropylsiloxane

DHA:

Docosahexaenoic acid

DMOX:

4,4-dimethyloxazoline

ECL:

Equivalent chain length

EI:

Electron impact ionization

EPA:

Eicosapentaenoic acid

FA:

Fatty acid(s)

FCL:

Fractional chain length

FAME:

Fatty acid methyl ester(s)

FID:

Flame ionization detector

GC:

Gas chromatography

HPLC:

High performance liquid chromatography

MI:

Methylene interrupted

MS:

Mass spectrometry

MUFA:

Monounsaturated fatty acid(s)

NMI:

Non-methylene interrupted

PEG:

Polyethylene glycol

PUFA:

Polyunsaturated fatty acid(s)

RT:

Retention time

SFA:

Saturated fatty acid(s)

TOF:

Time of flight

4,8,12-TMTD:

Methyl 4,8,12-trimethyl tridecanoate

7-Me-6-16:1 ME:

Methyl 7-methyl-6-hexaenoate

FD:

Furan ring with two methyl substituents

FM:

Furan ring with one methyl substituent

TIC:

Total ion current

References

  1. Ackman RG (1989) Fatty acids. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils, vol 1. CRC Press, Boca Raton, FL, pp 103–137

    Google Scholar 

  2. AOCS Official Method Ce 1i-07 (2007) Determination of saturated, cis-monounsaturated and cis-polyunsaturated fatty acids in marine and other oils containing long-chain polyunsaturated fatty acids (PUFAs) by capillary GLC, AOCS, Urbana, IL

  3. Santercole V, Delmonte P, Kramer JKG (2012) Comparison of separations of fatty acids from fish products using a 30-m Supelcowax-10 and a 100-m SP-2560 column. Lipids 47:329–344

    Article  PubMed  CAS  Google Scholar 

  4. Ackman RG (1986) WCOT (capillary) gas-liquid chromatography. In: Hamilton RJ, Rossell JB (eds) Analysis of oils and fats. Elsevier Applied Science Publishers, New York, pp 137–206

    Google Scholar 

  5. Ackman RG (1967) The chain-length overlap problem in gas-liquid chromatography with polyester liquid phases. Lipids 2:502–505

    Article  PubMed  CAS  Google Scholar 

  6. Kramer JKG, Fouchard RC, Jenkins KJ (1985) Differences in chromatographic properties of fused silica capillary columns, coated, crosslinked, bonded, or crosslinked and bonded with polyethylene glycols (CARBOWAX 20M) using complex fatty acid methyl ester mixtures. J Chromatogr Sci 23:54–56

    Article  CAS  Google Scholar 

  7. Sébédio J-L, Ratanayake WWN, Ackman RG, Prevost J (1993) Stability of polyunsaturated omega-3 fatty acids during deep fat frying of Atlantic mackerel (Scomber scombrus L.). Food Res Int 26:163–172

    Article  Google Scholar 

  8. Fournier V, Juaneda P, Destaillats F, Dionisi F, Lambelet P, Sebedio J-L, Berdeaux O (2006) Analysis of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization. J Chromatogr A 1129:21–28

    Article  PubMed  CAS  Google Scholar 

  9. Fournier V, Destaillats F, Juanéda P, Dionisi F, Lambelet P, Sébédio J-L, Berdeaux O (2006) Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur J Lipid Sci Technol 108:33–42

    Article  CAS  Google Scholar 

  10. Kolanowski W, Laufenberg G (2006) Enrichment of food products with polyunsaturated fatty acids by fish oil addition. Eur Food Res Technol 222:472–477

    Article  CAS  Google Scholar 

  11. Azizian H, Kramer JKG, Ehler S, Curtis JM (2010) Rapid quantitation of fish oil fatty acids and their ethyl esters by FT-NIR models. Eur J Lipid Sci Technol 112:452–462

    Article  CAS  Google Scholar 

  12. Sciotto C, Mjøs SA (2012) Trans isomers of EPA and DHA in omega-3 products on the European market. Lipids 47:659–667

    Article  PubMed  CAS  Google Scholar 

  13. Cruz-Hernandez C, Deng Z, Zhou J, Hill AR, Yurawecz MP, Delmonte P, Mossoba MM, Dugan MER, Kramer JKG (2004) Methods for analysis of conjugated linoleic acid and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. J AOAC Int 87:545–562

    PubMed  CAS  Google Scholar 

  14. Kairenius P, Toivonen V, Shingfield KJ (2011) Identification and ruminal outflow of long-chain fatty acid biohydrogenation intermediates in cows fed diets containing fish oil. Lipids 46:587–606

    Article  PubMed  CAS  Google Scholar 

  15. Aldai N, Hervás G, Belenguer Á, Frutos P, Mantecóm AR, Kramer JKG (2012) Evaluating the in vitro metabolism of docosahexaenoic acid in sheep rumen fluid. Lipids 47:821–825

    Article  PubMed  CAS  Google Scholar 

  16. Kramer JKG, Blackadar CB, Zhou J (2002) Evaluation of two GC columns (60-m SUPELCOWAX 10 and 100-m CP Sil 88) for analysis of milkfat with emphasis on CLA, 18:1, 18:2 and 18:3 isomers, and short- and long-chain FA. Lipids 37:823–835

    Google Scholar 

  17. Ratnayake WMN, Hansen SL, Kennedy MP (2006) Evaluation of the CP-Sil 88 and SP-2560 GC columns used in the recently approved AOCS Official Method Ce 1 h-05: Determination of cis-, trans-, saturated, monounsaturated, and polyunsaturated fatty acids in vegetable or non- ruminant animal oils and fats by capillary GLC method. J Am Oil Chem Soc 83:475–488

    Article  CAS  Google Scholar 

  18. Kramer JKG, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan MER (2008) Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag ion SPE fractionation. Lipids 43:259–273

    Article  PubMed  CAS  Google Scholar 

  19. Delmonte P, Fardin Kia A-R, Hu Q, Rader JI (2009) Review of methods for preparation and gas chromatographic separation of trans and cis reference fatty acids. J. AOAC Int 92:1310–1326

    PubMed  CAS  Google Scholar 

  20. Mossoba MM, Moss J, Kramer JKG (2009) Trans fat labeling and levels in US foods: assessment of gas chromatographic and infrared spectroscopic techniques for regulatory compliance. J AOAC Int 92:1284–1300

    PubMed  CAS  Google Scholar 

  21. Mjøs SA, Haugsgjerd BO (2011) Trans fatty acid analyses in samples of marine origin: the risk of false positives. J Agr Food Chem 59:3520–3531

    Article  Google Scholar 

  22. Delmonte P, Fardin Kia A-R, Kramer JKG, Mossoba MM, Sidisky L, Rader JI (2011) Separation characteristics of fatty acid methyl esters using SLB-1L111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr 1218:545–554

    Article  CAS  Google Scholar 

  23. Delmonte P, Fardin Kia A-R, Kramer JKG, Mossoba MM, Sidisky L, Tyburczy C, Rader JI (2012) Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A 1233:137–146

    Article  PubMed  CAS  Google Scholar 

  24. Destaillats F, Guitard M, Cruz-Hernandez C (2011) Identification of Δ6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography mass-spectrometry using ionic-liquid based capillary column. J Chromatogr A 1218:9384–9389

    Article  PubMed  CAS  Google Scholar 

  25. Eulitz K, Yurawecz MP, Sehat N, Fritsche J, Roach JAG, Mossoba MM, Kramer JKG, Adlof RO, Ku Y (1999) Preparation, separation, and confirmation of the eight geometrical cis/trans conjugated linoleic acid isomers 8,10- through 11,13-18:2. Lipids 34:873–877

    Article  PubMed  CAS  Google Scholar 

  26. Delmonte P, Roach JAG, Mossoba MM, Morehouse KM, Lehmann L, Yurawecz MP (2003) Synthesis and isolation of trans-7, cis-9 octadecadienoic acid and other CLA isomers by base conjugation of partially hydrogenated gamma-linolenic acid. Lipids 38:579–583

    Article  PubMed  CAS  Google Scholar 

  27. Delmonte P, Roach JAG, Mossoba MM, Losi G, Yurawecz MP (2004) Synthesis, isolation, and GC analysis of all the 6,8-to 13,15-cis/trans conjugated linoleic acid isomers. Lipids 39:185–191

    PubMed  CAS  Google Scholar 

  28. Delmonte P, Qing H, Fardin Kia A-R, Rader JI (2008) Preparation, chromatographic separation and relative retention times of cis/trans heptadecaenoic (17:1) fatty acids. J Chromatogr A 1214:30–36

    Article  PubMed  CAS  Google Scholar 

  29. Ratnayake MWN, Olsson B, Ackman RG (1989) Novel branched-chain fatty acids in certain fish oils. Lipids 24:630–637

    Article  PubMed  CAS  Google Scholar 

  30. Sano Y (1967) Studies on the Antarctic whale oils by gas-liquid chromatography using a hydrogen flame ionization detector-VIII. Identification of 7-methyl-6-hexadecenoic acid in whale blubber oil. Yukagaku 16:605–610

    CAS  Google Scholar 

  31. The AOCS Lipid Library [http://lipidlibrary.aocs.org/ms/ms12/index.htm; Accessed on 20 May 2013]

  32. Delmonte P, Fardin Kia A-R, Rader JI (2013) Separation of fatty acid methyl esters by GC- online hydrogenation × GC. Anal Chem 85:1517–1524

    Article  PubMed  CAS  Google Scholar 

  33. Caballeira NM, Maldonado ME (1988) 7-Methyl-8-hexadecenoic acid: a novel fatty acid from the marine sponge Desmapsama anchorata. Lipids 23:690–693

    Article  Google Scholar 

  34. Ishii K, Okajima H, Koyamatsu T, Okada Y, Watanabe H (1988) The composition of furan fatty acids in the crayfish. Lipids 23:694–700

    Article  CAS  Google Scholar 

  35. Schröder M, Vetter W (2013) Detection of 430 fatty acid methyl esters from a transesterified butter sample. J Am Oil Chem Soc 90:771–790

    Article  Google Scholar 

  36. Dayhuff LE, Wells MJ (2005) Identification of fatty acids in fishes collected from the Ohio River using gas chromatography-mass spectrometry in chemical ionization and electron impact modes. J Chromatogr A 1098:144–149

    Article  PubMed  CAS  Google Scholar 

  37. Spitzer V (1997) Structure analysis of fatty acids by gas chromatography—low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives—a review. Prog Lipid Res 35:387–408

    Article  Google Scholar 

  38. Spitzer V (1999) Gas chromatography/(electron impact) mass spectrometry analysis of conjugated linoleic acid (CLA) using different derivatization techniques. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign, IL, pp 110–125

    Google Scholar 

  39. Yu QT, Liu BN, Zhang JY, Huang ZH (1989) Location of double bonds in fatty acids of fish oil and rat testis lipids. Gas chromatography-mass spectrometry of the oxazoline derivatives. Lipids 24:79–83

    Article  PubMed  CAS  Google Scholar 

  40. Christie WW (2003) Lipid analysis, isolation, separation, identification and structural analysis of lipids, 3rd edn. The Oily Press, Bridgwater

  41. Bannon CD, Craske JD, Norman LM (1988) Effect of overload of capillary gas-chromatographic columns on the equivalent chain length of C18 unsaturated fatty acid methyl esters. J Chromatogr 447:43–52

    CAS  Google Scholar 

  42. Glass RL, Krick TP, Sand DM, Rahn CH, Schlenk H (1975) Furanoid fatty acids from fish lipids. Lipids 10:695–702

    Article  PubMed  CAS  Google Scholar 

  43. Ackman RG, Hooper SN (1967) Examination of isoprenoid fatty acids as distinguishing characteristics of specific marine oils with particular reference to whale oils. Comp Biochem Physiol 24:549–565

    Google Scholar 

  44. Ackman RG, Hansen RP (1967) The occurrence of diastereomers of phytanic and pristanic acids and their determination by gas-liquid chromatography. Lipids 2:357–362

    Article  PubMed  CAS  Google Scholar 

  45. Ackman RG (1999) Conjugated linoleic acid (CLA) in lipids of fish tissue. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign, pp 283–295

    Google Scholar 

  46. Juanéda P, de la Pérrière SB, Sébédio J-L, Grégoire S (2003) Influence of heat and refining on formation of CLA isomers in sunflower oil. J Am Oil Chem Soc 80:937–940

    Article  Google Scholar 

  47. The AOCS Lipid Library [http://lipidlibrary.aocs.org/ms/ms03b/index.htm; Accessed on 20 May 2013]

  48. Ackman RG, Safe L, Hooper SN, Paradis M (1972) 7-Methyl-7-hexadecenoic acid: Isolation from lipids of the ocean sunfish Mola mola (Linnaeus) 1758. Lipids 8:21–24

    Article  Google Scholar 

  49. Pascal JC, Ackman RG (1975) Occurrence of 7-methyl-7-hexadecenoic acid, the corresponding alcohol, 7-methyl-6-hexadecenoic acid, and 5-methyl-4-hexadecenoic acid in sperm whale oils. Lipids 10:478–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Fardin-Kia.

About this article

Cite this article

Fardin-Kia, A.R., Delmonte, P., Kramer, J.K.G. et al. Separation of the Fatty Acids in Menhaden Oil as Methyl Esters with a Highly Polar Ionic Liquid Gas Chromatographic Column and Identification by Time of Flight Mass spectrometry. Lipids 48, 1279–1295 (2013). https://doi.org/10.1007/s11745-013-3830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3830-2

Keywords

Navigation