Skip to main content
Log in

Suitability of Soxhlet Extraction to Quantify Microalgal Fatty Acids as Determined by Comparison with In Situ Transesterification

  • Original Article
  • Published:
Lipids

Abstract

To assess Soxhlet extraction as a method for quantifying fatty acids (FA) of microalgae, crude lipid, FA content from Soxhlet extracts and FA content from in situ transesterification (ISTE) were compared. In most cases, gravimetric lipid content was considerably greater (up to sevenfold) than the FA content of the crude lipid extract. FA content from Soxhlet lipid extraction and ISTE were similar in 12/18 samples, whereas in 6/18 samples, total FA content from Soxhlet extraction was less than the ISTE procedure. Re-extraction of residual biomass from Soxhlet extraction with ISTE liberated a quantity of FA equivalent to this discrepancy. Employing acid hydrolysis before Soxhlet extraction yielded FA content roughly equivalent to ISTE, indicating that acidic conditions of ISTE are responsible for this observed greater recovery of FA. While crude lipid derived from Soxhlet extraction was not a useful proxy for FA content for the species tested, it is effective in most strains at extracting total saponifiable lipid. Lipid class analysis showed the source of FA was primarily polar lipids in most samples (12/18 lipid extracts contained <5% TAG), even in cases where total FA content was high (>15%). This investigation confirms the usefulness of ISTE, reveals limitations of gravimetric methods for projecting biodiesel potential of microalgae, and reinforces the need for intelligent screening using both FA and lipid class analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

FAME:

Fatty acid methyl ester

TE:

Transesterification

ISTE:

In-situ transesterification

R-ISTE:

Residual ISTE

TE-AH:

TE preceded by acid hydrolysis

PUFA:

Polyunsaturated fatty acid

GC:

Gas chromatography

TAG:

Triacylglycerol

HPLC-CAD:

High performance liquid chromatography-charged aerosol detection

LC-MS:

Liquid chromatography/mass spectrometry

References

  1. Andersen RA, Jacobson DM, Sexton JP (1991) Provasoli-Guillard center for culture of marine phytoplankton, catalog of strains. Provasoli-Guillard Center for Culture of Marine Phytoplankton, West Boothbay Harbor

  2. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  PubMed  CAS  Google Scholar 

  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  4. Burja A, Radianingtyas H, Windust A, Barrow C (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169. doi:10.1007/s00253-006-0419-1

    Article  PubMed  CAS  Google Scholar 

  5. Carrapiso AI, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35:1167–1177. doi:10.1007/s11745-000-0633-8

    Article  PubMed  CAS  Google Scholar 

  6. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  PubMed  CAS  Google Scholar 

  7. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  8. Christie WW (1989) Gas chromatography and lipids: a practical guide. Dundee, The Oily Press

  9. Christie WW (1993) Advances in lipid methodology—two. The Oily Press, Dundee

  10. Craigie JS, Armstrong SM, Staples LS, Bauder AG (2003) Photobioreactor. United States patent application publication. US 2003/0059932 A1

  11. Dubinsky Z, Aaronson S (1979) Increase of lipid yields from some algae by acid extraction. Phytochem 18:51–52. doi:10.1016/S0031-9422(00)90914-2

    Article  CAS  Google Scholar 

  12. Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684. doi:10.1016/j.fuel.2009.10.011

    Article  CAS  Google Scholar 

  13. Eller FJ, King JW (1998) Supercritical CO2 extraction of fat: comparison of gravimetric and GC-FAME methods. J Agric Food Chem 46:3657–3661. doi:10.1021/jf980236a

    Article  CAS  Google Scholar 

  14. Folch J, Lees M, Sloane-Stanley GH, others (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  15. Gardner R, Peters P, Peyton B, Cooksey KE (2010) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 1–12. doi:10.1007/s10811-010-9633-4

  16. Gordillo FJL, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10:135–144

    Article  CAS  Google Scholar 

  17. Gouveia L, Oliveira A (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. doi:10.1007/s10295-008-0495-6

    Article  PubMed  CAS  Google Scholar 

  18. Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleoabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826. doi:10.1007/s10295-009-0559-2

    Article  PubMed  CAS  Google Scholar 

  19. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726. doi:10.1098/rsif.2009.0322

    Article  PubMed  Google Scholar 

  20. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507. doi:10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  21. Griffiths MJ, Hille RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45:1053–1060. doi:10.1007/s11745-010-3468-2

    Article  PubMed  CAS  Google Scholar 

  22. Guckert JB, Cooksey KE, Jackson LL (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8:139–149. doi:10.1016/0167-7012(88)90015-2

    Article  CAS  Google Scholar 

  23. Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  24. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  25. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  26. Laureillard J, Largeau C, Waeghemaeker F, Casadevall E (1986) Biosynthesis of the resistant polymer in the alga Botryococcus braunii. Studies on the possible direct precursors. J Nat Prod 49:794–799

    Article  CAS  Google Scholar 

  27. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77. doi:10.1016/j.biortech.2009.03.058

    Article  PubMed  CAS  Google Scholar 

  28. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114

    PubMed  CAS  Google Scholar 

  29. Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116. doi:10.1016/S0167-7012(00)00217-7

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. doi:10.1002/bit.21489

    Article  PubMed  CAS  Google Scholar 

  31. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049. doi:10.1007/s10529-009-9975-7

    Article  PubMed  CAS  Google Scholar 

  32. Lisa M, Lynen F, Holcapek M, Sandra P (2007) Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J Chromatogr A 1176(1–2):135–142

    Article  PubMed  CAS  Google Scholar 

  33. MacDougall KM, McNichol J, McGinn PJ, O’Leary SJB, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography—high resolution mass spectrometry. Anal Bioanal Chem 401(8):2609–2616. doi: 10.1007/s00216-011-5376-6

    Google Scholar 

  34. Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T (2009) Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnol Lett 31:1367-1372. doi:10.1007/s10529-009-0029-y

    Google Scholar 

  35. Metzger P (1994) Phenolic ether lipids with an n-alkenylresorcinol moiety from a Bolivian strain of Botryococcus braunii (A race). Phytochem 36:195–212. doi:10.1016/S0031-9422(00)97038-9

    Article  CAS  Google Scholar 

  36. Metzger P, Largeau C (2004) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496. doi:10.1007/s00253-004-1779-z

    Article  PubMed  Google Scholar 

  37. Palmquist DL, Jenkins TC (2003) Challenges with fats and fatty acid methods. J Anim Sci 81:3250–3254

    PubMed  CAS  Google Scholar 

  38. Provasoli L, Pintner IJ (1959) Artificial media for fresh-water algae: problems and suggestions. In: Tryon CA Jr, Hartmann RT (eds) The ecology of algae. Spec. Pub. No. 2, Pymatuning Laboratory of Field Biology. University of Pittsburgh, Pittsburgh, pp 84–96

  39. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995

    Article  PubMed  CAS  Google Scholar 

  40. Tran H-L, Hong S-J, Lee C-G (2009) Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol Bioprocess Eng 14:187–192. doi:10.1007/s12257-008-0171-8

  41. Vehovec T, Obreza A (2010) Review of operating principle and applications of the charged aerosol detector. J Chromatogr A 1217(10):1549–1556

    Article  PubMed  CAS  Google Scholar 

  42. Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730. doi:10.1016/j.biortech.2010.11.026

    Article  PubMed  CAS  Google Scholar 

  43. Woyewoda AD, Shaw SJ, Ke PJ, Burns BG (1986) Recommended laboratory methods for assessment of fish quality. Canadian Tech Report of Fisheries and Aquatic Sciences No. 1448, Fisheries and Oceans Canada ISSN 0706-6473

Download references

Acknowledgments

Many people contributed to this project, either by providing biomass or assisting with lipid analysis. We would like to thank (in alphabetical order): Mather Carscallen, Katie Dickinson, Laura Garrison, Jenny MacPherson, Scott MacQuarrie, Ron Melanson, Stephen O’Leary, Kyoung Park and Crystal Whitney. This work was funded by the National Bioproducts Program in Microalgal Biofuels. This is NRC Publication No. 54055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse McNichol.

About this article

Cite this article

McNichol, J., MacDougall, K.M., Melanson, J.E. et al. Suitability of Soxhlet Extraction to Quantify Microalgal Fatty Acids as Determined by Comparison with In Situ Transesterification. Lipids 47, 195–207 (2012). https://doi.org/10.1007/s11745-011-3624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3624-3

Keywords

Navigation