Skip to main content
Log in

Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microalgae have the potential to synthesize and accumulate lipids which contain high value fatty acids intended for nutrition and biodiesel applications. Nevertheless, lipid extraction methods for microalgae cells are not well established and there is not a standard analytical methodology to extract fatty acids from lipid-producing microalgae. In this paper, current lipid extraction procedures employing organic solvents (chloroform/methanol, 2:1 and 1:2, v/v), sodium hypochlorite solution (NaClO), acid-catalysed hot-water extraction and the saponification process [2.5 M KOH/methanol (1:4, v/v)] have been evaluated with two species of microalgae with different types of cell walls. One is a marine diatom, Phaeodactylum tricornutum, and the other a freshwater green microalga, Haematococcus pluvialis. Lipids from all types of extracts were estimated gravimetrically and their fatty acids were quantified by a HPLC equipped with Q-TOF mass spectrometer. Results indicated significant differences both in lipids yield and fatty acids composition. The chloroform and methanol mixture was the most effective extraction solvent for the unsaturated fatty acids such as DPA (C22:05), DHA, (C22:06), EPA (C20:05) and ARA (C20:04). While acid treatments improved the saturated fatty acids (SFAs) yield, especially the short chain SFA, lauric acid (C12:0), whose amount was 64% higher in P. tricornutum and 156% higher in H. pluvialis compared to organic solvent extractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanghvi AM, Lo YM. Present and potential industrial applications of macro- and microalgae. Recent Pat Food Nutr Agric. 2010;2(3):187–94.

    Article  Google Scholar 

  2. Choi S-A, Jung J-Y, Kim K, Lee J-S, Kwon J-H, Kim S, et al. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresour Technol. 2014;161:469–72.

    Article  CAS  Google Scholar 

  3. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels. 2012;5(1):18. doi:10.1186/1754-6834-5-18.

    Article  CAS  Google Scholar 

  4. Cavonius LR, Carlsson NG, Undeland I (2014) Quantification of total fatty acids in microalgae: comparison of extraction and transesterification methods. Anal Bioanal Chem 406 (28): 7313-22.

  5. Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  Google Scholar 

  6. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories. 2012;11:96. doi:10.1186/1475-2859-11-96.

    Article  CAS  Google Scholar 

  7. Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol. 2013;128:118–24.

    Article  CAS  Google Scholar 

  8. Bligh E, Dyer W. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  Google Scholar 

  9. Yongmanitchai W, Ward OP. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol. 1991;57(2):419–25.

    CAS  Google Scholar 

  10. Cho SC, Choi WY, Oh SH, Lee CG, Seo YC, Kim JS, Song CH, Kim GV, Lee SY, Kang DH, Lee, HY (2012) Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. J Biomed Biotechnol(6 pageshttp://dx.doi.org/10.1155/2012/359432): p. 359432.

  11. Lohman EJ, Gardner RD, Halverson L, Macur RE, Peyton BM, Gerlach R. An efficient and scalable extraction and quantification method for algal derived biofuel. J Microbiol Methods. 2013;94(3):235–44.

    Article  CAS  Google Scholar 

  12. Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, et al. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories. 2014;13:14. doi:10.1186/1475-2859-13-14.

    Article  Google Scholar 

  13. Liu K-S. Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. JAOCS. 1994;71(11):1179–80.

    CAS  Google Scholar 

  14. Park J-Y, Choi S-A, Jeong M-J, Nam B, Oh Y-K, Lee J-S. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid. Bioresour Thechnol. 2014;162:379–83.

    Article  CAS  Google Scholar 

  15. Park JY, Oh YK, Lee JS, Lee K, Jeong MJ, Choi SA. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Bioresour Technol. 2014;153:408–12.

    Article  CAS  Google Scholar 

  16. Norris PC, Dennis EA. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci U S A. 2012;109(22):8517–22.

    Article  CAS  Google Scholar 

  17. Zhang R-Z, Li L, Liu S-T, Chem R-M, Rao P-F. An improved method of cholesterol determination in egg yolk by HPLC. J Food Biochem. 1999;23:351–61.

    Article  CAS  Google Scholar 

  18. Ma YH, Wang X, Niu YF, Yang ZK, Zhang MH, Wang ZM, et al. Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories. 2014;13(1):100. doi:10.1186/s12934-014-0100-9.

    Google Scholar 

  19. Saha SK, Hayes J, Moane S, Murray P. Tagging of biomolecules with deuterated water (D2O) in commercially important microalgae. Biotechnol Lett. 2013;35(7):1067–72.

    Article  CAS  Google Scholar 

  20. He L, Han X, Yu Z. A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics. PLoS One. 2014;9(4):e93922. doi:10.1371/journal.pone.0093922.

    Article  Google Scholar 

  21. Hagen C, Siegmund S, Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol. 2002;37(2):217–26.

    Article  Google Scholar 

  22. Rippka R, Deruelles J, Waterbury J, Herdman M, Stanie RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.

    Google Scholar 

  23. Dillon JT, Aponte JC, Tarozo R, Huang Y. Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography. J Chromatogr A. 2013;1312:18–25.

    Article  CAS  Google Scholar 

  24. Woo SG, Yoo K, Lee J, Bang S, Lee M, On K, et al. Comparison of fatty acid analysis methods for assessing biorefinery applicability of wastewater cultivated microalgae. Talanta. 2012;97:103–10.

    Article  CAS  Google Scholar 

  25. Wen ZY, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv. 2003;21(4):273–5.

    Article  CAS  Google Scholar 

  26. Pribyl P, Cepak V, Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol. 2012;94(2):549–61.

    Article  CAS  Google Scholar 

  27. Ryckebosch E, Muylaert K, Foubert I. Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc. 2011;89:189–98.

    Article  Google Scholar 

  28. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8(2):190–209.

    Article  CAS  Google Scholar 

  29. Choi SA, Jung JY, Kim K, Kwon JH, Lee JS, Kim SW, et al. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng. 2014;37(11):2199–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Irish Research Council (Grant No. GOIPD/2015/681) and an Enterprise Ireland Innovation partnership grant (Grant No. IP/2013/0439). Paz Otero is recipient of a Government of Ireland Postdoctoral Award 2015 (GOIPD/2015/681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paz Otero.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, P., Saha, S.K., Gushin, J.M. et al. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications. Anal Bioanal Chem 409, 4659–4667 (2017). https://doi.org/10.1007/s00216-017-0412-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0412-9

Keywords

Navigation