Skip to main content
Log in

Dissimilar Properties of Vaccenic Versus Elaidic Acid in β-Oxidation Activities and Gene Regulation in Rat Liver Cells

  • Original Article
  • Published:
Lipids

Abstract

Vaccenic acid (trans-11-C18:1) chemically resembles elaidic acid (trans-9-C18:1) which is assumed to increase the risk of cardiovascular diseases, and thus could exert similar effects. Possible different oxidation rates of vaccenic versus elaidic acid were checked in muscles and liver, and through related gene expression in normal rat liver cells. In hepatic mitochondria, carnitine palmitoyltransferase (CPT) I exhibited comparable activity rates with both trans-isomers. CPT II activity was 30% greater (P < 0.05) with vaccenic than with elaidic acid as nonesterified fatty acids (NEFAs) or acyl-CoAs. Activity of the first β-oxidation step was similar between the isomers in all the tissue slices and liver extracts assayed. Respiration rates were comparable with both trans-isomers as NEFAs in various liver extracts, but were 30% greater (P < 0.05) with vaccenoyl-CoA than with elaidoyl-CoA in liver mitochondria. Vaccenic acid was oxidised 25% more (P < 0.05) by liver peroxisomes than elaidic acid. In hepatocytes cultured with trans- and corresponding cis-C18:1 isomers, gene expression of CPT I, hydroxyacyl-CoA dehydrogenase and hydroxymethylglutaryl-CoA synthase was at least 100% increased (P < 0.05), but was unchanged with vaccenic acid, relative to controls. In conclusion, the position and geometry of the double bonds in acyl chains are suggested to confer on vaccenic and elaidic acid specific biochemical properties that might differently affect their fates in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACO:

Acyl-CoA oxidase

ACS:

Acyl-CoA synthetase

BSA:

Bovine serum albumin

CPT:

Carnitine palmitoyltransferase

FA:

Fatty acid

HAD:

Hydroxyacyl-CoA dehydrogenase

HMG:

Hydroxymethylglutaryl (in HMG-CoA synthase)

NEFA:

Nonesterified FA

PFAOS:

Peroxisomal FA-oxidising system

PPAR:

Peroxisome proliferator-activated receptor

References

  1. Noma A, Yokosuka T, Kitamura K (1983) Plasma lipids and apolipoproteins as discriminators for presence and severity of angiographically defined coronary artery disease. Atherosclerosis 49:1–7

    Article  CAS  PubMed  Google Scholar 

  2. Whayne TF, Alaupovic P, Curry MD, Lee ET, Anderson PS, Schechter E (1981) Plasma apolipoprotein B and VLDL-, LDL-, and HDL-cholesterol as risk factors in the development of coronary artery disease in male patients examined by angiography. Atherosclerosis 39:411–424

    Article  CAS  PubMed  Google Scholar 

  3. Constant J (2004) The role of eggs, margarines and fish oils in the nutritional management of coronary artery disease and strokes. Keio J Med 53:131–136

    Article  CAS  PubMed  Google Scholar 

  4. Han SN, Leka LS, Lichtenstein AH, Ausman LM, Schaefer EJ, Meydani SN (2002) Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia. J Lipid Res 43:445–452

    CAS  PubMed  Google Scholar 

  5. Schwandt P (1995) Trans-fatty acids and atherosclerosis. Med Monatsschr Pharm 18:78–79

    CAS  PubMed  Google Scholar 

  6. Ackman RG, Mag TK (1998) Trans fatty acids and the potential for less in technical products. In: Sébédio JL, Christie WW (eds) Trans fatty acids in human nutrition, The Oily Press, Dundee

  7. Chardigny JM, Destaillats F, Malpuech-Brugere C, Moulin J, Bauman DE, Lock AL, Barbano DM, Mensink RP, Bezelgues JB, Chaumont P, Combe N, Cristiani I, Joffre F, German JB, Dionisi F, Boirie Y, Sebedio JL (2008) Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans fatty acids collaboration (transfact) study. Am J Clin Nutr 87:558–566

    CAS  PubMed  Google Scholar 

  8. Wolff RL, Combe NA, Destaillats F, Boue C, Precht D, Molkentin J, Entressangles B (2000) Follow-up of the Delta4 to Delta16 trans-18:1 isomer profile and content in French processed foods containing partially hydrogenated vegetable oils during the period 1995–1999. Analytical and nutritional implications. Lipids 35:815–825

    Article  CAS  PubMed  Google Scholar 

  9. Katan MB, Zock PL, Mensink RP (1995) Trans fatty acids and their effects on lipoproteins in humans. Ann Rev Nutr 15:473–493

    Article  CAS  Google Scholar 

  10. Mensink RP, Katan MB (1993) Trans monounsaturated fatty acids in nutrition and their impact on serum lipoprotein levels in man. Prog Lipid Res 32:111–122

    Article  CAS  PubMed  Google Scholar 

  11. Zock PL, Katan MB (1992) Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J Lipid Res 33:399–410

    CAS  PubMed  Google Scholar 

  12. Griinari JM, Bauman DEP (1999) Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research. AOCS Press, Champaign, Urbana

    Google Scholar 

  13. Ledoux M, Rouzeau A, Bas P, Sauvant D (2002) Occurrence of trans-C18:1 fatty acid isomers in goat milk: effect of two dietary regimens. J Dairy Sci 85:190–197

    Article  CAS  PubMed  Google Scholar 

  14. Precht D, Molkentin J (1997) Effect of feeding on trans positional isomers of octadecenoic acid in milk fats. Milchwissenschaft 52:564–568

    CAS  Google Scholar 

  15. Ascherio A, Hennekens CH, Buring JE, Master C, Stampfer MJ, Willett WC (1994) Trans-fatty acids intake and risk of myocardial infarction. Circulation 89:94–101

    CAS  PubMed  Google Scholar 

  16. Bolton-Smith C, Woodward M, Fenton S, Brown CA (1996) Does dietary trans fatty acid intake relate to the prevalence of coronary heart disease in Scotland? Eur Heart J 17:837–845

    CAS  PubMed  Google Scholar 

  17. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585

    Article  CAS  PubMed  Google Scholar 

  18. Meijer GW, van Tol A, van Berkel TJ, Weststrate JA (2001) Effect of dietary elaidic versus vaccenic acid on blood and liver lipids in the hamster. Atherosclerosis 157:31–40

    Article  CAS  PubMed  Google Scholar 

  19. Tyburczy C, Major C, Lock AL, Destaillats F, Lawrence P, Brenna JT, Salter AM, Bauman DE (2009) Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in golden Syrian hamsters. J Nutr 139:257–263

    CAS  PubMed  Google Scholar 

  20. Kelley DS, Erickson KL (2003) Modulation of body composition and immune cell functions by conjugated linoleic acid in humans and animal models: benefits vs. risks. Lipids 38:377–386

    Article  CAS  PubMed  Google Scholar 

  21. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298

    Article  CAS  PubMed  Google Scholar 

  22. Høy CE, Hølmer G (1979) Incorporation of cis- and trans-octadecenoic acids into the membranes of rat liver mitochondria. Lipids 14:727–733

    Article  PubMed  Google Scholar 

  23. Zevenbergen JL, Houtsmuller UM, Gottenbos JJ (1988) Linoleic acid requirement of rats fed trans fatty acids. Lipids 23:178–186

    Article  CAS  PubMed  Google Scholar 

  24. Channing MA, Simpson N (1993) Radiosynthesis of [1–11C] polyhomoallylic fatty acids. J Label Compd Radiopharm 33:541–546

    Article  CAS  Google Scholar 

  25. Goldman P, Vagelos PR (1961) The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem 236:2620–2623

    CAS  PubMed  Google Scholar 

  26. Korsrud GO, Conacher HB, Jarvis GA, Beare-Rogers JL (1977) Studies on long chain cis- and trans-acyl-CoA esters and acyl-CoA dehydrogenase from rat heart mitochondria. Lipids 12:177–181

    Article  CAS  PubMed  Google Scholar 

  27. Lawson LD, Kummerow FA (1979) Beta-oxidation of the coenzyme A esters of elaidic, oleic, and stearic acids and their full-cycle intermediates by rat heart mitochondria. Biochim Biophys Acta 573:245–254

    CAS  PubMed  Google Scholar 

  28. Lawson LD, Kummerow FA (1979) Beta-oxidation of the coenzyme A esters of vaccenic, elaidic, and petroselaidic acids by rat heart mitochondria. Lipids 14:501–503

    Article  CAS  PubMed  Google Scholar 

  29. Seglen PO (1973) Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res 82:391–398

    Article  CAS  PubMed  Google Scholar 

  30. Demizieux L, Degrace P, Gresti J, Loreau O, Noel JP, Chardigny JM, Sebedio JL, Clouet P (2002) Conjugated linoleic acid isomers in mitochondria: evidence for an alteration of fatty acid oxidation. J Lipid Res 43:2112–2122

    Article  CAS  PubMed  Google Scholar 

  31. Veerkamp JH, van Moerkerk TB, Glatz JF, Zuurveld JG, Jacobs AE, Wagenmakers AJ (1986) 14CO2 production is no adequate measure of [14C]fatty acid oxidation. Biochem Med Metab Biol 35:248–259

    Article  CAS  PubMed  Google Scholar 

  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  33. Niot I, Pacot F, Bouchard P, Gresti J, Bernard A, Bézard J, Clouet P (1994) Involvement of microsomal vesicles in part of the sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition in mitochondrial fractions of rat liver. Biochem J 304:577–584

    CAS  PubMed  Google Scholar 

  34. Degrace P, Demizieux L, Gresti J, Chardigny JM, Sebedio JL, Clouet P (2004) Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57bl/6j mice fed the conjugated trans-10, cis-12-isomer of linoleic acid. J Nutr 134:861–867

    CAS  PubMed  Google Scholar 

  35. Bronfman M, Inestrosa NC, Leighton F (1979) Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun 88:1030–1036

    Article  CAS  PubMed  Google Scholar 

  36. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  37. Degrace P, Moindrot B, Mohamed I, Gresti J, Du ZY, Chardigny JM, Sebedio JL, Clouet P (2006) Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR−/− ApoB100/100 mice fed trans-10, cis-12 conjugated linoleic acid. J Lipid Res 47:2647–2655

    Article  CAS  PubMed  Google Scholar 

  38. Lippel K, Carpenter D, Gunstone FD, Ismail IA (1973) Activation of long chain fatty acids by subcellular fractions of rat liver. 3. Effect of ethylenic bond position on acyl-CoA formation of cis-octadecenoates. Lipids 8:124–128

    Article  CAS  PubMed  Google Scholar 

  39. Lippel K, Gunstone FD, Barve JA (1973) Activation of long chain fatty acids by subcellular fractions of rat liver. II. Effect of ethylenic bond position on acyl-CoA formation of trans-octadecenoates. Lipids 8:119–123

    Article  CAS  PubMed  Google Scholar 

  40. Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12

    CAS  PubMed  Google Scholar 

  41. Richieri GV, Ogata RT, Kleinfeld AM (1999) Fatty acid interactions with native and mutant fatty acid binding proteins. Mol Cell Biochem 192:77–85

    Article  CAS  PubMed  Google Scholar 

  42. Guzman M, Klein W, del Pulgar TG, Geelen MJ (1999) Metabolism of trans fatty acids by hepatocytes. Lipids 34:381–386

    Article  CAS  PubMed  Google Scholar 

  43. Coots RH (1964) A comparison of the metabolism of elaidic, oleic, palmitic, and stearic acids in the rat. J Lipid Res 5:468–472

    CAS  PubMed  Google Scholar 

  44. Ono K, Fredrickson DS (1964) The metabolism of 14C-labeled cis and trans isomers of octadecenoic and octadecadienoic acids. J Biol Chem 239:2482–2488

    CAS  PubMed  Google Scholar 

  45. Yu W, Liang X, Ensenauer RE, Vockley J, Sweetman L, Schulz H (2004) Leaky beta-oxidation of a trans-fatty Acid: incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecanoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecanoylcarnitine in the matrix of rat mitochondria. J Biol Chem 279:52160–52167

    Article  CAS  PubMed  Google Scholar 

  46. Tardy AL, Giraudet C, Rousset P, Rigaudiere JP, Laillet B, Chalancon S, Salles J, Loreau O, Chardigny JM, Morio B (2008) Effects of trans MUFA from dairy and industrial sources on muscle mitochondrial function and insulin sensitivity. J Lipid Res 49:1445–1455

    Article  CAS  PubMed  Google Scholar 

  47. Berge RK, Aarsland A (1985) Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. are the two enzyme systems regulated by a substrate-induced mechanism? Biochim Biophys Acta 837:141–151

    CAS  PubMed  Google Scholar 

  48. Nakamura MT, Cheon Y, Li Y, Nara TY (2004) Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083

    Article  CAS  PubMed  Google Scholar 

  49. Louet JF, Chatelain F, Decaux JF, Park EA, Kohl C, Pineau T, Girard J, Pegorier JP (2001) Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor alpha (PPARalpha)-independent pathway. Biochem J 354:189–197

    Article  CAS  PubMed  Google Scholar 

  50. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr Jean-Michel Chardigny DR INRA, Mr Koenraad Duhem, Mrs Corinne Marmonier for helpful discussions, and Mrs Monique Baudoin for figure construction and typing of the manuscript. This work was supported by grants from the CNIEL (Paris) and the Region Bourgogne (Dijon), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Clouet.

About this article

Cite this article

Du, ZY., Degrace, P., Gresti, J. et al. Dissimilar Properties of Vaccenic Versus Elaidic Acid in β-Oxidation Activities and Gene Regulation in Rat Liver Cells. Lipids 45, 581–591 (2010). https://doi.org/10.1007/s11745-010-3428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3428-x

Keywords

Navigation