Skip to main content
Log in

Conjugated Linoleic Acid Isomers Reduce Cholesterol Accumulation in Acetylated LDL-Induced Mouse RAW264.7 Macrophage-Derived Foam Cells

  • Original Article
  • Published:
Lipids

Abstract

Synthetic activators of peroxisome proliferator-activated receptors (PPAR)-α and -γ are capable of reducing macrophage foam cell cholesterol accumulation through the activation of genes involved in cholesterol homeostasis. Since conjugated linoleic acids (CLA) were also demonstrated to activate PPARα and PPARγ in vivo and in vitro, we tested the hypothesis that CLA are also capable of reducing macrophage foam cell cholesterol accumulation. Thus, mouse RAW264.7 macrophage-derived foam cells were treated with CLA isomers, c9t11-CLA and t10c12-CLA, and linoleic acid (LA), as reference fatty acid, and analyzed for the concentrations of free and esterified cholesterol, cholesterol efflux and expression of genes involved in cholesterol homeostasis (CD36, ABCA1, LXRα, NPC-1, and NPC-2). Treatment with c9t11-CLA and t10c12-CLA, but not LA, lowered cholesterol accumulation, stimulated acceptor-dependent cholesterol efflux, and increased relative mRNA concentrations of CD36, ABCA1, LXRα, NPC-1, and NPC-2 (< 0.05). In conclusion, the present study showed that CLA isomers reduce cholesterol accumulation in RAW264.7 macrophage-derived foam cells presumably by enhancing lipid acceptor-dependent cholesterol efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter A1

AcLDL:

Acetylated LDL

CLA:

Conjugated linoleic acid

HDL:

High-density lipoprotein

LA:

Linoleic acid

LDL:

Low-density lipoprotein

LXRα:

Liver X receptor α

NPC:

Niemann Pick type C

PPAR:

Peroxisome proliferator-activated receptor

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V et al (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    Article  PubMed  Google Scholar 

  2. Gerrity RG, Naito HK (1980) Ultrastructural identification of monocyte-derived foam cells in fatty streak lesions. Artery 8:208–214

    PubMed  CAS  Google Scholar 

  3. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  4. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M et al (2001) PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58

    Article  PubMed  CAS  Google Scholar 

  5. Chinetti G, Lestavel S, Fruchart JC, Clavey V, Staels B (2003) Peroxisome proliferator-activated receptor α reduces cholesterol esterification in macrophages. Circ Res 92:212–217

    Article  PubMed  CAS  Google Scholar 

  6. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93:229–240

    Article  PubMed  CAS  Google Scholar 

  7. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  8. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA et al (2001) PPARγ-LXR-ABCA1 Pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171

    Article  PubMed  CAS  Google Scholar 

  9. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    Article  PubMed  CAS  Google Scholar 

  10. Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W, Drobnik W, Barlage S, Büchler C et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  PubMed  CAS  Google Scholar 

  11. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA et al (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  PubMed  CAS  Google Scholar 

  12. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N et al (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355

    Article  PubMed  CAS  Google Scholar 

  13. Chinetti-Gbaguidi G, Rigamonti E, Helin L, Mutka AL, Lepore M, Fruchart JC, Clavey V, Ikonen E, Lestavel S, Staels B (2005) Peroxisome proliferator-activated receptor α controls cellular cholesterol trafficking in macrophages. J Lipid Res 46:2717–2725

    Article  PubMed  CAS  Google Scholar 

  14. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  PubMed  CAS  Google Scholar 

  15. Strauss JF III, Liu P, Christenson LK, Watari H (2002) Sterols and intracellular vesicular trafficking: lessons from the study of NPC1. Steroids 67:947–951

    Article  PubMed  CAS  Google Scholar 

  16. Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, Valledor AF, Davis RA, Willson TM et al (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J Clin Invest 114:1564–1576

    PubMed  CAS  Google Scholar 

  17. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21:365–371

    PubMed  CAS  Google Scholar 

  18. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, Leesnitzer LA, Belury MA (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J Lipid Res 40:1426–1433

    PubMed  CAS  Google Scholar 

  19. Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARγ-dependent mechanism. Biochim Biophys Acta 1581:89–99

    PubMed  CAS  Google Scholar 

  20. Ringseis R, Müller A, Herter C, Gahler S, Steinhart H, Eder K (2006) CLA isomers inhibit TNFα-induced eicosanoid release from human vascular smooth muscle cells via a PPARγ ligand-like action. Biochim Biophys Acta 1760:290–300

    PubMed  CAS  Google Scholar 

  21. Toomey S, Harhen B, Roche HM, Fitzgerald D, Belton O (2006) Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187:40–49

    Article  PubMed  CAS  Google Scholar 

  22. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477S

    PubMed  CAS  Google Scholar 

  23. Mitchell PL, Langille MA, Currie DL, McLeod RS (2005) Effect of conjugated linoleic acid isomers on lipoproteins and atherosclerosis in the Syrian Golden hamster. Biochim Biophys Acta 1734:269–276

    PubMed  CAS  Google Scholar 

  24. Tricon S, Burdge GC, Williams CM, Calder PC, Yaqoob P (2005) The effects of conjugated linoleic acid on human health-related outcomes. Proc Nutr Soc 64:171–182

    Article  PubMed  CAS  Google Scholar 

  25. Tricon S, Burdge GC, Kew S, Banerjee T, Russell JJ, Jones EL, Grimble RF, Williams CM, Yaqoob P, Calder PC (2004) Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr 80:614–620

    PubMed  CAS  Google Scholar 

  26. Weldon S, Mitchell S, Kelleher D, Gibney MJ, Roche HM (2004) Conjugated linoleic acid and atherosclerosis: no effect on molecular markers of cholesterol homeostasis in THP-1 macrophages. Atherosclerosis 174:261–273

    PubMed  CAS  Google Scholar 

  27. Agatha G, Voigt A, Kauf E, Zintl F (2004) Conjugated linoleic acid modulation of cell membrane in leukemia cells. Cancer Lett 209:87–103

    Article  PubMed  CAS  Google Scholar 

  28. Cheng WL, Lii CK, Chen HW, Lin TH, Liu KL (2004) Contribution of conjugated linoleic acid to the suppression of inflammatory responses through the regulation of the NF-κB pathway. J Agric Food Chem 52:71–78

    Article  PubMed  CAS  Google Scholar 

  29. Ringseis R, Müller A, Düsterloh K, Schleser S, Eder K, Steinhart H (2006) Formation of conjugated linoleic acid metabolites in human vascular endothelial cells. Biochim Biophys Acta 1761:377–383

    PubMed  CAS  Google Scholar 

  30. Cimini A, Cristiano L, Colafarina S, Benedetti E, Di Loreto S, Festuccia C, Amicarelli F, Canuto RA, Cerù MP (2005) PPARγ-dependent effects of conjugated linoleic acid on the human glioblastoma cell line (ADF). Int J Cancer 117:923–933

    Article  PubMed  CAS  Google Scholar 

  31. Kang K, Liu W, Albright KJ, Park Y, Pariza MW (2003) Trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPARγ expression. Biochem Biophys Res Commun 303:795–799

    Article  PubMed  CAS  Google Scholar 

  32. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci USA 97:12097–12102

    Article  PubMed  CAS  Google Scholar 

  33. Calvo D, Gómez-Coronado D, Lasunción MA, Vega MA (1997) CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol 17:2341–2349

    PubMed  CAS  Google Scholar 

  34. Calvo D, Gómez-Coronado D, Suárez Y, Lasunción MA, Vega MA (1998) Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res 39:777–788

    PubMed  CAS  Google Scholar 

  35. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268:11811–11816

    PubMed  CAS  Google Scholar 

  36. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–49988

    Article  PubMed  CAS  Google Scholar 

  37. Araki N, Horiuchi S, Rahim AT, Takata K, Morino Y (1990) Microquantification of cholesterol and cholesteryl esters in rat peritoneal macrophages by reverse-phase high-performance liquid chromatography. Anal Biochem 185:339–345

    Article  PubMed  CAS  Google Scholar 

  38. Han J, Hajjar DP, Febbraio M, Nicholson AC (1997) Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 272:21654–21659

    Article  PubMed  CAS  Google Scholar 

  39. Devaraj S, Hugou I, Jialal I (2001) Alpha-tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 42:521–527

    PubMed  CAS  Google Scholar 

  40. Tamura Y, Osuga J, Adachi H, Tozawa R, Takanezawa Y, Ohashi K, Yahagi N, Sekiya M, Okazaki H et al (2004) Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. J Biol Chem 279:30938–30944

    Article  PubMed  CAS  Google Scholar 

  41. Steinhart H, Rickert R, Winkler K (2003) Identification and analysis of conjugated linoleic acid isomers (CLA). Eur J Med Res 8:370–372

    PubMed  CAS  Google Scholar 

  42. Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L (2008) Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI. J Mol Med 86:171–183

    Article  PubMed  CAS  Google Scholar 

  43. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51:2515–2520

    PubMed  CAS  Google Scholar 

  44. Eder K, Brandsch C (2002) Effect of fatty acid composition of rapeseed oil on plasma lipids, fatty acid composition of tissues and susceptibility of low-density lipoprotein to lipid peroxidation in cholesterol-fed hamsters. Eur J Lipid Sci Technol 104:3–13

    Article  CAS  Google Scholar 

  45. Hojnacki JL, Nicolosi RJ, Hoover G, Liansa N, Ershow RG, El Lozy M, Haycs KG (1978) Comparison of two ultracentrifugation procedures for separation of nonhuman primate lipoproteins. Anal Biochem 88:485–494

    Article  PubMed  CAS  Google Scholar 

  46. Fraenkel-Conrad H (1957) In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 4. Academic Press, New York, pp 247–269

  47. Ringseis R, Muschick A, Eder K (2007) Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARα target genes in rat liver. J Nutr 137:77–83

    PubMed  CAS  Google Scholar 

  48. Westerterp M, Van Eck M, de Haan W, Offerman EH, Van Berkel TJ, Havekes LM, Rensen PC (2007) Apolipoprotein CI aggravates atherosclerosis development in ApoE-knockout mice despite mediating cholesterol efflux from macrophages. Atherosclerosis 195:e9–e16

    Article  PubMed  CAS  Google Scholar 

  49. Noone EJ, Roche HM, Nugent AP, Gibney MJ (2002) The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br J Nutr 88:243–251

    Article  PubMed  CAS  Google Scholar 

  50. Bocos C, Göttlicher M, Gearing K, Banner C, Enmark E, Teboul M, Crickmore A, Gustafsson JA (1995) Fatty acid activation of peroxisome proliferator-activated receptor (PPAR). J Steroid Biochem Mol Biol 53:467–473

    Article  PubMed  CAS  Google Scholar 

  51. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  52. Valeille K, Ferezou J, Parquet M, Amsler G, Gripois D, Quignard-Boulange A, Martin JC (2006) The natural concentration of the conjugated linoleic acid, cis-9, trans-11, in milk fat has antiatherogenic effects in hyperlipidemic hamsters. J Nutr 136:1305–1310

    PubMed  CAS  Google Scholar 

  53. Hirakata M, Tozawa R, Imura Y, Sugiyama Y (2004) Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun 323:782–788

    Article  PubMed  CAS  Google Scholar 

  54. Schleser S, Ringseis R, Eder K (2006) Conjugated linoleic acids have no effect on TNFα-induced adhesion molecule expression, U937 monocyte adhesion, and chemokine release in human aortic endothelial cells. Atherosclerosis 186:337–344

    Article  PubMed  CAS  Google Scholar 

  55. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerosis lesions development in mice. J Clin Invest 105:1049–1056

    Article  PubMed  CAS  Google Scholar 

  56. Stachowska E, Dziedziejko V, Safranow K, Gutowska I, Adler G, Ciechanowicz A, Machalinski B, Chlubek D (2007) Inhibition of phospholipase A2 activity by conjugated linoleic acids in human macrophages. Eur J Nutr 46:28–33

    Article  PubMed  CAS  Google Scholar 

  57. Stachowska E, Baśkiewicz-Masiuk M, Dziedziejko V, Adler G, Bober J, Machaliński B, Chlubek D (2007) Conjugated linoleic acids can change phagocytosis of human monocytes/macrophages by reduction in Cox-2 expression. Lipids 42:707–716

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ringseis.

About this article

Cite this article

Ringseis, R., Wen, G., Saal, D. et al. Conjugated Linoleic Acid Isomers Reduce Cholesterol Accumulation in Acetylated LDL-Induced Mouse RAW264.7 Macrophage-Derived Foam Cells. Lipids 43, 913–923 (2008). https://doi.org/10.1007/s11745-008-3226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3226-x

Keywords

Navigation