Skip to main content
Log in

Highly Sensitive Determination of Diverse Ceramides in Human Hair Using Reversed-Phase High-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry

  • Original Article
  • Published:
Lipids

Abstract

Since ceramides (CERs) play roles in signal transduction and cell regulation, CERs of human hair might be responsible for apoptosis during keratinization, in addition to their structural barrier and water-holding functions. Although, we previously developed a method for comprehensive profiling of the CERs in hair, that method was too insensitive to quantitatively characterize the CERs in a small amount of hair samples. The aim of this study was to develop a novel method for the highly sensitive determination of the diverse CERs. The method developed is negative ion electrospray ionization mass spectrometry (ESI-MS) coupled to reversed-phase high-performance liquid chromatography (RP-HPLC) using methanol containing 10 mM ammonium acetate as a mobile phase. By this method, 48 peaks derived from 73 kinds of CERs were simultaneously determined in selected ion monitoring measurement using one calibration line of the standard N-palmitoyl dihydrosphigosine, based on extremely small differences in the molar responses among different species of CERs, followed by the calculation of the actual levels using corrections for 13C and 2H effects. This method had extremely high sensitivity as indicated in the limit of quantification being in the femtomolar range. Other quantitative validation data, such as reproducibility, linearity and recoveries, were all sufficient. The quantitative levels of CERs determined by RP-HPLC–ESI-MS were comparable with those determined by thin-layer chromatography. This method was successfully applied to the characterization of levels of CERs in only 1-mm pieces derived from a single hair fiber and revealed the presence of interindividual and intraindividual variations of the CER composition. This RP-HPLC–ESI-MS method can be a powerful tool for future research on physicochemical and physiological roles of CERs in hair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

% CV:

Percentage coefficient of variation

ADS:

Ceramides consisting of α-hydroxy fatty acid and dihydrosphingosine moieties

APCI:

Atmospheric pressure chemical ionization

AS:

Ceramides consisting of α-hydroxy fatty acid and sphingosine moieties

CER:

Ceramide

DAG:

Diacylglycerol

ESI:

Electrospray ionization

LC:

Liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

MS:

Mass spectrometry

NDS:

Ceramides consisting of non-hydroxy fatty acid and dihydrosphingosine moieties

NS:

Ceramides consisting of non-hydroxy fatty acid and sphingosine moieties

RP-HPLC:

Reversed-phase high-performance liquid chromatography

SIM:

Selected ion monitoring

TLC:

Thin-layer chromatography

References

  1. Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA (1993) Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem 268:9244–9261

    Google Scholar 

  2. Riboni L, Prinetti A, Bassi R, Caminiti A, Tettamanti G (1995) A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation. J Biol Chem 270:26868–26875

    Article  PubMed  CAS  Google Scholar 

  3. Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  PubMed  CAS  Google Scholar 

  4. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    PubMed  CAS  Google Scholar 

  5. Sullards MC, Wang E, Peng Q, Merril AH (2003) Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell Mol Biol 49:789–797

    PubMed  CAS  Google Scholar 

  6. Drobnik W, Liebisch G, Audebert F Fröhlich -XD, Glück T, Vogel P, Rothe G, Schmitz G (2003) Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 44:754–761

    Article  PubMed  CAS  Google Scholar 

  7. Merrill AH, Sweeley CC (1996) Sphingolipids: metabolism and cell signaling. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, New York, pp 309–339

  8. Alderson NL, Walla MD, Hama H (2005) A novel method for the measurement of in vivo fatty acid 2-hydroxylase activity by gas chromatography–mass spectrometry. J Lipid Res 46:1569–1575

    Article  PubMed  CAS  Google Scholar 

  9. Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT (1994) 6-Hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 35:2060–2068

    PubMed  CAS  Google Scholar 

  10. Farwanah H, Wohlrab J, Neubert RHH, Raith K (2005) Profiling of human stratum corneum ceramides by means of normal phase LC/APCI–MS. Anal Bioanal Chem 383:632–637

    Article  PubMed  CAS  Google Scholar 

  11. Elias PM (1983) Epidermal lipids, barrier, function, and desquamation. J Invest Dermatol 80:44s–49s

    Article  CAS  Google Scholar 

  12. Imokawa G, Akasaki S, Hattori M, Yoshizuka N (1986) Selective recovery of deranged water-holding properties by stratum corneum. J Invest Dermatol 87:758–761

    Article  PubMed  CAS  Google Scholar 

  13. Hamanaka S, Nakazawa S, Yamanaka M, Uchida Y, Otsuka F (2005) Glucosylceramide accumulates preferentially in lamella bodies in differentiated keratinocytes. Br J Dermatol 152:426–434

    Article  PubMed  CAS  Google Scholar 

  14. Hussler G, Kaba G, Francois AM, Saint-Leger D (1995) Isolation and identification of human hair ceramides. Int J Cosmet Sci 17:197–206

    CAS  Google Scholar 

  15. Masukawa Y, Narita H, Imokawa G (2005) Characterization of the lipid composition at the proximal root regions of human hair. J Cosmet Sci 56:1–16

    PubMed  CAS  Google Scholar 

  16. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin. J Invest Dermatol 96:523–526

    Article  PubMed  CAS  Google Scholar 

  17. van Veldhoven PP, Bishop WR, Yurivich DA, Bell RM (1995) Ceramide quantitation: evaluation of a mixed micellar assay using E. coli diacylglycerol kinase. Biochem Mol Biol Int 36:21–30

    PubMed  Google Scholar 

  18. McNabb TJ, Cremesti AE, Brown PR, Fischl AS (1999) The separation and direct detection of ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and evaporative light-scattering detection. Anal Biochem 276:242–250

    Article  PubMed  CAS  Google Scholar 

  19. Hoi U, Pei PT, Minard RD (1981) Separation of molecular species of ceramides as benzoyl and p-nitrobenzoyl derivatives by high performance liqid chromatography. Lipids 16:855–862

    Article  Google Scholar 

  20. Mano N, Oda Y, Yamada K, Asakawa N, Katayama K (1997) Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal Biochem 244:291–300

    Article  PubMed  CAS  Google Scholar 

  21. Gu M, Kerwin JL, Watts JD, Aebersold R (1997) Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry. Anal Biochem 244:347–356

    Article  PubMed  CAS  Google Scholar 

  22. Couch LH, Churchwell MI, Doerge DR, Tolleson WH, Howard PC (1997) Identification of ceramides in human cells using liquid chromatography with detection by atmospheric pressure chemical ionization–mass spectrometry. Rapid Commun Mass Spectrom 11:504–512

    Article  PubMed  CAS  Google Scholar 

  23. Liebisch G, Drobnik W, Reil M, Trümbach B, Arneche R, Olgemöller B, Roscher A, Schmitz G (1999) Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI–MS/MS). J Lipid Res 40:1539–1546

    PubMed  CAS  Google Scholar 

  24. Yamada Y, Kajiwara K, Yano M, Kishida E, Masuzawa Y, Kojo S (2001) Increase of ceramides and its inhibition by catalase during chemically induced apoptosis of HL-60 cells determined by electrospray ionization tandem mass spectrometry. Biochim Biophys Acta 1532:115–120

    PubMed  CAS  Google Scholar 

  25. Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302:199–212

    Article  PubMed  CAS  Google Scholar 

  26. Fillet M, van Heugen J-C, Servais A-C, de Graeve J, Crommen J (2002) Separation, identification and quantitation of ceramides in human cancer cells by liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 949:225–233

    Article  PubMed  CAS  Google Scholar 

  27. Lee MH, Lee GH, Yoo JS (2003) Analysis of ceramides in cosmetics by reversed-phase liquid chromatography/electrospray ionization mass spectrometry with collision-induced dissociation. Rapid Commun Mass Spectrom 17:64–75

    Article  PubMed  CAS  Google Scholar 

  28. Yamane M (2003) Simultaneous quantitative determination method for ceramide species from crude cellular extracts by high-performance liquid chromatography–thermospray mass spectrometry. J Chromatogr B 783:181–190

    Article  CAS  Google Scholar 

  29. Pettus BJ, Kroesen B-J, Szulc ZM, Bielawska A, Bielawski J, Hannun Y, A., Busman M (2003) Qunatitative measurement of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure ionization mass spectrometry. Rapid Commun Mass Spectrom 18:577–583

    Article  Google Scholar 

  30. Camera E, Picardo M, Presutti C, Catarcini P, Fanali S (2004) Separation and characterization of sphingoceramides by high-performance liquid chromatography–electrospray ionization mass spectrometry. J Sep Sci 27:971–976

    Article  PubMed  CAS  Google Scholar 

  31. Masukawa Y, Tsujimura H, Narita H (2006) Liquid chromatography–mass spectrometry for comprehensive profiling of ceramide molecules in human hair. J Lipid Res 47:1559–1571

    Article  PubMed  CAS  Google Scholar 

  32. Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    PubMed  CAS  Google Scholar 

  33. Ramjit HG, Newton R, Guare JP (2005) A novel coaxial electrospray ionization method for characterizing hexacosanoylceramides by Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 19:1257–1262

    Article  PubMed  CAS  Google Scholar 

  34. Masukawa Y, Tsujimura H, Imokawa G (2005) A systematic method for the sensitive and specific determination of hair lipids in combination with chromatography. J Chromatogr B 823:131–142

    Article  CAS  Google Scholar 

  35. Yergey JA (1983) A general approach to calculating isotopic distributions for mass spectrometry. Int J Mass Spectrom Ion Phys 52:337–349

    Article  CAS  Google Scholar 

  36. Lieser B, Liebisch G, Drobnik W, Schmitz G (2003) Quantification of sphingosine and sphinganine from crude lipid extracts by HPLC electrospray ionization tandem mass spectrometry. J Lipid Res 44:2209–2216

    Article  PubMed  CAS  Google Scholar 

  37. Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G (2004) High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tendem mass spectrometry coupled with isotope correction algorithm. Biochim Biophys Acta 1686:108–117

    PubMed  CAS  Google Scholar 

  38. Han X, Cheng H (2005) Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidmics. J Lipid Res 46:163–175

    Article  PubMed  CAS  Google Scholar 

  39. Han X, Gross RW (2005) Shotgun lipidmics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directry from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  PubMed  CAS  Google Scholar 

  40. Robbins CR (1994) Chemical and physical behavior of human hair, 3rd edn. Springer, Heidelberg, pp 23–45

    Google Scholar 

  41. Vietzke J-P, Straßner M, Hinze U (1999) Separation and identification of ceramides in the human stratum corneum by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry and electrospray multiple-stage mass spectrometry profiling. Chromatographia 50:15–20

    Article  CAS  Google Scholar 

  42. Vietzke J-P, Brandt O, Abeck D, Rapp C, Strassner M, Schreiner V, Hinze U (2001) Comparative investigation of human stratum corneum ceramides. Lipids 36:299–304

    Article  PubMed  CAS  Google Scholar 

  43. Masukawa Y, Tsujimura H, Tanamachi H, Narita H, Imokawa G (2004) Damage to human hair caused by repeated bleaching combined with daily weathering during daily life activities. Exog Dermatol 3:273–281

    Article  CAS  Google Scholar 

  44. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734

    Article  PubMed  CAS  Google Scholar 

  45. Venable ME, Webb-Froehlich LM, Sloan EF, Thomley JE (2006) Shift in sphingolipid metabolism leads to an accumulation of ceramide in senescence Mech Ageing Dev 127:473–480

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our cordial gratitude to Katsumi Kita of the Kao Corporation for his discussions and encouragement of this study. Our sincere thanks also go to Manabu Watanabe, Yoshiya Sugai and Yoshinori Nishizawa of the Kao Corporation for technical support in the synthesis of standard CERs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Masukawa.

About this article

Cite this article

Masukawa, Y., Tsujimura, H. Highly Sensitive Determination of Diverse Ceramides in Human Hair Using Reversed-Phase High-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Lipids 42, 275–290 (2007). https://doi.org/10.1007/s11745-006-3012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-3012-6

Keywords

Navigation