Skip to main content
Log in

In vitro comparison of hepatic metaboliosm of 9cis-11 trans and 10trans-12cis isomers of CLA in the rat

  • Articles
  • Published:
Lipids

Abstract

Hepatic metabolism of the two main isomers of CLA (9cis-11 trans, 10trans-12cisC18∶2) was compared to that of oleic acid (representative of the main plasma FA) in 16 rats by using the in vitro method of incubated liver slices. Liver tissue samples were incubated at 37°C for 17h under an atmosphere of 95% O2/5%CO2 in a medium supplemented with 0.75 mM of FA mixture (representative of circulating nonesterified FA) and with 55 μM [1-14C]9cis-11 trans C18∶2, [1-14C]10trans-12cis C18∶2, or [1-14C]oleate. The uptake of CLA by hepatocytes was similar for both isomers (9%) and was three times higher (P<0.01) than for oleate (2.6%). The rate of CLA isomer oxidation was two times higher (49 and 40% of incorporated amounts of 9cis-11 trans and 10trans-12 cis, respectively) than that of oleate (P<0.01). Total oxidation of oleate and CLA isomers into [14CO2] was low (2 to 7% of total oxidized FA) compared to the partial oxidation (93 to 98%) leading to the production of [14C] acid-soluble products. CLA isoemrs escaping from catabolism were both highly desaturated (26.7 and 26.8%) into conjugated 18∶3. Oleate and CLA isomers were mainly esterified into neutral lipids (30%). They were slowly secreted as parts of VLDL particles (<0.4% of FA incorporated into cells), the extent of secretion of oleate and of 10trans-12 cis being 2.2-fold higher than that of 9cis-11 trans (P<0.02). In conclusion, this study clearly showed that both CLA isomers were highly catabolized by hepatocytes, reducing their availability for peripheral tissues. Moreover, more than 25% of CLA escaping from catabolism was converted into conjugated 18∶3, the biological properties of which remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASP:

acid-soluble products

CEA:

Commissariat à l’Energie Atomique

References

  1. Pariza, M.W., Park, Y., and Cook, M.E. (2001) The Biologically Active Isomers of Conjugated Linoleic Acid., Prog. Lipid Res. 40, 283–298.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly, G.S. (2001) Conjugated Linoleic Acid: A Review, Altern. Med. Rev. 6, 367–382.

    PubMed  CAS  Google Scholar 

  3. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y., and Pariza, M W. (1992) Dietary Sources of Conjugated Linoleic Dienoic Isomers of Linoleic Acid, a New Recognized Class of Anticarcinogens, J. Food Comp. Anal. 5, 185–197.

    Article  CAS  Google Scholar 

  4. Sébédio, J.L., Grangirard, A., and Prevost, J. (1988) Linoleic Acid Isomers in Treated Sunflower Oils, J. Am. Oil Chem. Soc. 65, 362–366.

    Google Scholar 

  5. Kamlage, B., Hartmann, L., Gruhl, B., and Blaut, M. (1999) Intestinal Microorganisms Do Not Supply Associated Gnotobiotic Rats with Conjugated Linoleic Acid, J. Nutr. 129, 2212–2217.

    PubMed  CAS  Google Scholar 

  6. Ritzenthaler, K.L., McGuire, M.K., Falen, R., Shultz, T.D., Dasgupta, N., and McGuire, M.A. (2001) Estimation of Conjugated Linoleic Acid Intake by Written Dietary Assessment Methodologies Underestimates Actual Intake Evaluated by Food Duplicate Methodology, J. Nutr. 131, 1548–1554.

    PubMed  CAS  Google Scholar 

  7. Griinari, J.M., and Bauman, D.E. (1999) Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Meat and Milk in Ruminants, in Advances in Conjugated Linoleic Acid Research (Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., and Nelson, G.J., eds.) Vol. 1, pp. 180–200, AOCS Press, Champaign.

    Google Scholar 

  8. Bauman, D.E., Baumgard, L.H., Corl, B.A., and Griinari, J.M. (1999) Biosynthesis of Conjugated Linoleic Acid in Ruminants, Proc. Am. Soc. Anim. Sci., 1–15 (Netlink: http://www.asas.org/ jas/symposia/proceeding/0937.pdf).

  9. Gnädig, S., Rickert, R., Sébédio, J.L., and Steinhart, H. (2001) Conjugated Linoleic Acid (CLA): Physiological Effects and Production, Eur. J. Lipid Sci. Technol. 103, 56–61.

    Article  Google Scholar 

  10. Banni, S., Day, B.W., Evans, R.W., Corongiu, F.P., and Lombardi, B. (1995) Detection of Conjugated Diene Isomers of Linoleic Acid in LiverLipids of Rats Fed Choline-Devoid Diet Indicates That the Diet Does Not Cause Lipoperoxidation, J. Nutr. Biochem. 6, 281–289.

    Article  CAS  Google Scholar 

  11. Sébédio, J.L., Juanéda, P., Dodson, G., Ramilison, I., Martin, J.C., Chardigny, J.M., and Christie, W.W. (1997) Metabolites of Conjugated Isomers of Linoleic Acid (CLA) in the Rat, Biochim. Biophys. Acta 1345, 5–10.

    PubMed  Google Scholar 

  12. Sébédio, J.L., Angioni, E., Chardigny, J.M., Grégoire, S., Juanéda, P., and Berdeaux, O. (2001) The Effect of Conjugated Linoleic Acid Isomers on Fatty Acid Profiles of Liver and Adipose Tissues and Their Conversion to Isomers of 16∶2 and 18∶3 Conjugated Fatty Acids in Rats, Lipids 36, 575–582.

    Article  PubMed  Google Scholar 

  13. Banni, S., Carta, G., Contini, M.S., Angioni, E., Deiana, M., Dessi, M.A., Melis, M.P., and Corongiu, F.P. (1996) Characterization of Conjugated Diene Fatty Acids in Milk, Dairy Products, and Lamb Tissues, J. Nutr. Biochem. 7, 150–155.

    Article  CAS  Google Scholar 

  14. Belury, M.A., and Kempa-Steczko, A. (1997) Conjugated Linoleic Acid Modulates Hepatic Lipid Composition in Mice, Lipids 32, 199–204.

    Article  PubMed  CAS  Google Scholar 

  15. Berdeaux, O., Gnädig, S., Chardigny, J.M., Loreau, O., Noël, J.P., and Sébédio, J.L. (2002) In vitro Desaturation and Elongation of Rumenic Acid by Rat Liver Microsomes, Lipids 37, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  16. Gruffat, D., Durand, D., Graulet, B., and Bauchart, D. (1996) Regulation of VLDL Synthesis and Secretion in the Liver, Reprod. Nutr. Dev. 36, 375–389.

    PubMed  CAS  Google Scholar 

  17. Graulet, B., Gruffat, D., Durand, D., and Bauchart, D. (1998) Fatty Acid Metabolism and Very Low Density Lipoprotein Secretion in Liver Slices from Rats and Preruminant Calves, J. Biochem. 124, 1212–1219.

    PubMed  CAS  Google Scholar 

  18. Chilliard, Y.,. Bauchart, D., and Barnouin, J. (1984) Determination of Plasma Nonesterified Fatty Acids in Herbivores and Man: A Comparison of Value Obtained by Manual or Automatic Chromatographic, Titrimetric, Colorimetric and Enzymatic Methods, Reprod. Nutr. Develop. 24, 469–482.

    CAS  Google Scholar 

  19. Gruffat-Mouty, D., Graulet, B., Durand, D., Samson-Bouma, M.E., and Bauchart, D. (1999) Apolipoprotein B Production and Very Low Density Lipoprotein Secretion by Calf Liver Slices, J. Biochem. 126, 188–193.

    PubMed  CAS  Google Scholar 

  20. Folch, J., Lees, M., and Sloane Stanley, G.H.S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  21. Christie, W.W., Sébédio, J.L., and Juanéda, P. (2001) A Practical Guide to the Analysis of Conjugated Linoleic Acid, inform 12, 147–152.

    Google Scholar 

  22. Bretillon, J., Chardigny, J.M., Grégoire, S., Berdeaux, O., and Sébédio, J.L. (1999) Effects of Conjugated Linoleic Acid Isomers on the Hepatic Microsomal Desaturation Activities in vitro, Lipids 34, 965–969.

    Article  PubMed  CAS  Google Scholar 

  23. Kaluzny, M.A., Rode, L.M., Meritt, M.V., and Epps, D.E. (1985) Rapid Separation of Lipid Classes in High Yield and Purity Using Bonded Phase Columns, J. Lipid Res. 26, 135–140.

    PubMed  CAS  Google Scholar 

  24. MacDonald, H.B. (2000) Conjugated Linoleic Acid and Disease Prevention: A Review of Current Knowledge, J. Am. Coll. Nutr. 19, 111S-118S.

    PubMed  CAS  Google Scholar 

  25. Shultz, T.D., Chew, B.P., Seaman, W.R., and Luedecke, L.O. (1992) Inhibitory Effect of Conjugated Linoleic, Acid Derivatives of Linoleic Acid and Beta Carotene in the in vitro Growth of Human Cancer Cells, Cancer Lett. 63, 125–133.

    Article  PubMed  CAS  Google Scholar 

  26. Cantwell, H., Devery, R., O’Shea, M., and Stanton, C. (1999) The Effect of Conjugated Linoleic Acid on the Antioxidant Enzyme Defense System in Rat Hepatocytes, Lipids 34, 833–839.

    Article  PubMed  CAS  Google Scholar 

  27. Heimberg, M., Weinstein, I., and Kohout, M. (1969) The Effects of Glucagon, Dibutyryl Cyclic, Adenosine 3′,5′-Monophosphate, and Concentration of Free Fatty Acid on Hepatic Lipid Metabolism, J. Biol. Chem. 244, 5131–5139.

    PubMed  CAS  Google Scholar 

  28. Gibbons, G.F., Bartlett, S.M., Sparks, C.E., and Sparks, J.D. (1992) Extracellular Fatty Acids Are Not Utilized Directly for the Synthesis of Very-Low Density Lipoprotein in Primary Cultures of Rat Hepatocytes, Biochem. J. 287, 749–753.

    PubMed  CAS  Google Scholar 

  29. Ontko, J.A. (1972) Metabolism of Free Fatty Acids in Isolated Liver Cells, J. Biol. Chem. 247, 1788–1800.

    PubMed  CAS  Google Scholar 

  30. Sakono, M., Miyanaga, F., Kawahara, S., Yamauchi, K., Fukuda, N., Watanabe, K., Iwata, T., and Sugano, M. (1999) Dietary Conjugated Linoleic Acid Reciprocally Modifies Ketogenesis and Lipid Secretion by the Rat Liver, Lipids 34, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  31. Sergiel, J.P., Chardigny, J.M., Sebedio, J.L., Berdeaux, O., Juaneda, P., Loreau, O., Pasquis, B., and Noel, J.P. (2001) β-Oxidation of Conjugated Linoleic Acid Isomers and Linoleic Acid in Rats, Lipids 36, 1327–1329.

    PubMed  CAS  Google Scholar 

  32. Park, Y., Albright, K.J.,. Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    Article  PubMed  CAS  Google Scholar 

  33. Juanéda, P., and Sébédio, J.L. (1999) Combined Silver-Ion and Reversed-Phase High-Performance Liquid Chromatography for the Separation and Identification of C-20 Metabolites or Conjugated Linoleic Acid Isomers in Rat Liver, Lipids, J. Chromatogr. B724, 213–219.

    Google Scholar 

  34. Fukuda, N., and Ontko, J.A. (1984) Interactions Between Fatty Acid Synthesis, Oxidation, and Esterification in the Production of Triglyceride-Rich Lipoproteins by the Liver, J. Lipid Res. 25, 831–842.

    PubMed  CAS  Google Scholar 

  35. Banni, S., Carta, G., Angioni, E., Murru, E., Scanu, P., Melis, M.P., Bauman, D.E., Fischer, S.M., and Ip, C. (2001) Distribution of Conjugated Linoleic Acid and Metabolites in Different Lipid Franctions in the Rat Liver, J. Lipid Res. 42, 1056–1061.

    PubMed  CAS  Google Scholar 

  36. Gibbons, G.F., and Wiggins, D. (1995) Intracellular Triacylglycerol Lipase: Its Role in the Assembly of Hepatic Very-Low-Density Lipoprotein (VLDL), Adv. Enzyme Regul. 35, 179–198.

    Article  PubMed  CAS  Google Scholar 

  37. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence That the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Gruffat.

About this article

Cite this article

Gruffat, D., De La Torre, A., Chardigny, JM. et al. In vitro comparison of hepatic metaboliosm of 9cis-11 trans and 10trans-12cis isomers of CLA in the rat. Lipids 38, 157–163 (2003). https://doi.org/10.1007/s11745-003-1046-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1046-4

Keywords

Navigation