Skip to main content
Log in

Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols

  • Published:
Lipids

Abstract

To study the effect of the chain length of medium-chain fatty acids on the intestinal absorption of long-chain fatty acids, we examined the lymphatic transport of fat following administration of five purified structured triacylglycerols (STAG) containing different medium-chain fatty acids in the sn-1, 3 positions and long-chain fatty acids in the sn-2 position in a rat model. Significant amounts of medium-chain fatty acids were found in lymph samples after intragastric administration of 1,3-dioctanoyl-2-linoleyl-sn-glycerol (8∶0/18∶2/8∶0), 1,3-didecanoyl-2-linoleyl-sn-glycerol, and 1,3-didodecanoyl-2-linoleyl-sn-glycerol. The accumulated lymphatic transport of medium-chain fatty acids increased with increasing carbon chain length. The recoveries of caprylic acid (8∶0), capric acid (10∶0), and lauric acid (12∶0) were 7.3±0.9, 26.3±2.4, and 81.7±6.9%, respectively. No significant differences were observed for the maximal intestinal absorption of linoleic acid (18∶2n−6) when the chain length of medium-chain fatty acids at the primary positions was varied, and the absorption of 18∶2 and oleic acid (18∶1) from 8∶0/18∶2/8∶0 and 1,3-dioctanoyl-2-oleyl-sn-glycerol was similar. We conclude that the chain length of the medium-chain fatty acids in the primary positions of STAG does not affect the maximal intestinal absorption of long-chain fatty acids in the sn-2 position in the applied rat model, whereas the distribution of fatty acids between the lymphatics and the portal vein reflects the chain length of the fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

GLC:

gas-liquid chromatography

HPLC:

high-performance liquid chromatography

LCT:

long-chain triacylglycerol

MCT:

medium-chain triacylglycerol

STAG:

structured triacylglycerol

8∶0/18∶2/8∶0:

1,3-dioctanoyl-2-linoleyl-sn-glycerol

10∶0/18∶2/10∶0:

1,3-didecanoyl-2-linoleyl-sn-glycerol

10∶0/18∶2/18∶2:

1,2(2,3)-dilinoleyl-(1)3-decanoyl-sn-glycerol

12∶0/18∶2/12∶0:

1,3-didodecanoyl-2-linoleyl-sn-glycerol

8∶0/18∶1/8∶0:

1,3-dioctanoyl-2-oleyl-sn-glycerol

References

  1. Small, D.M. (1991) The Effects of Glyceride Structure on Absorption and Metabolism, Annu. Rev. Nutr. 11, 413–434.

    Article  PubMed  CAS  Google Scholar 

  2. Mattson, F.H., and Volpenhein, R.A. (1964) The Digestion and Absorption of Triglycerides, J. Biol. Chem. 239, 2772–2777.

    PubMed  CAS  Google Scholar 

  3. Kayden, H.J., Senior, J.R., and Mattson, F.H. (1967) The Monoglyceride Pathway of Fat Absorption in Man, J. Clin. Invest. 46, 1695–1702.

    PubMed  CAS  Google Scholar 

  4. Bach, A.C., and Babayan, V.K. (1982) Medium-Chain Triglycerides: An Update, Am. J. Clin. Nutr. 36, 950–962.

    PubMed  CAS  Google Scholar 

  5. Papamandjaris, A.A., MacDougall, D.E., and Jones, P.J.H. (1998) Medium Chain Fatty Acid Metabolism and Energy Expenditure: Obesity Treatment Implications, Life Sci. 62, 1203–1215.

    Article  PubMed  CAS  Google Scholar 

  6. Babayan, V.K. (1987) Medium Chain Triglycerides and Structured Lipids, Lipids 22, 417–420.

    PubMed  CAS  Google Scholar 

  7. Mascioli, E.A., Bistrian, B.R., Babayan, V.K., and Blackburn, G.L. (1987) Medium Chain Triglycerides and Structured Lipids as Unique Nonglucose Energy Sources in Hyperalimentation, Lipids 22, 421–423.

    PubMed  CAS  Google Scholar 

  8. Merolli, A., Lindemann, J., and Vecchio, A.J.D. (1997) Medium-Chain Lipids: New Sources, USes, INFORM 8, 597–603.

    Google Scholar 

  9. Heird, W.C., Grundy, S.M., and Hubbard, V.S. (1986) Structured Lipids and Their Use in Clinical Nutrition, Am. J. Clin. Nutr. 43, 320–324.

    Google Scholar 

  10. Jeppesen, P.B., Christensen, M.S., Høy, C.E., and Mortensen, P.B. (1997) Essential Fatty Acid Deficiency in Patients with Severe Fat Malabsorption, Am. J. Clin. Nutr. 65, 837–843.

    PubMed  CAS  Google Scholar 

  11. Henwood, S., Wilson, D., White, R., and Trimbo, S. (1997) Developmental Toxicity Study in Rats and Rabbits Administered an Emulsion Containing Medium Chain Triglycerides as an Alternative Caloric Source, Fundam. Appl. Toxicol. 40, 185–190.

    Article  PubMed  CAS  Google Scholar 

  12. Christensen, M.S., Høy, C.E., Becker, C.C., and Redgrave, T.G. (1995) Intestinal Absorption and Lymphatic Transport of Eicosapentaenoic (EPA), Docosahexaenoic (DHA), and Decanoic Acids: Dependence on Intramolecular Triacylglycerol Structure, Am. J. Clin. Nutr. 61, 56–61.

    PubMed  CAS  Google Scholar 

  13. Christensen, M.S., Müllertz, A., and Høy, C.E. (1995) Absorption of Triglycerides with Defined or Random Structure by Rats with Biliary and Pancreatic Diversion, Lipids 30, 521–526.

    PubMed  CAS  Google Scholar 

  14. Ikeda, I., Tomari, Y., Sugano, M., Watanabe, S., and Nagata, J. (1991) Lymphatic Absorption of Structured Glycerolipids Containing Medium-Chain Fatty Acids and Linoleic Acid and Their Effect on Cholesterol Absorption in Rats, Lipids 26, 369–373.

    PubMed  CAS  Google Scholar 

  15. Jensen, G.L., McGarvey, N., Taraszewski, R., Wixson, S.K., Seidner, D.L., Pai, T., Yeh, Y.Y., Lee, T.W., and DeMichele, S.J. (1994) Lymphatic Absorption of Enterally Fed Structured Triacylglycerol vs. Physical Mix in a Canine Model, Am. J. Clin. Nutr. 60, 518–524.

    PubMed  CAS  Google Scholar 

  16. Tso, P., Karlstad, M.D., Bistrian, B.R., and DeMichele, S.J. (1995) Intestinal Digestion, Absorption, and Transport of Structured Triglycerides and Cholesterol in Rats, Am. J. Physiol. 268, G568-G577.

    PubMed  CAS  Google Scholar 

  17. Sakono, M., Takagi, H., Sonoki, H., Yoshida, H., Iwamoto, M., Ikeda, I., and Imaizumi, K. (1997) Absorption and Lymphatic Transport of Interesterified or Mixed Fats Rich in Saturated Fatty Acids and Their Effect on Tissue Lipids in Rats, Nutr. Res. 17, 1131–1141.

    Article  CAS  Google Scholar 

  18. Hubbard, V.S., and McKenna, M.C. (1987) Absorption of Safflower Oil and Structured Lipid Preparations in Patients with Cystic Fibrosis, Lipids 22, 424–428.

    PubMed  CAS  Google Scholar 

  19. Jandacek, R.J., Whiteside, J.A., Holcombe, B.N., Volpenhein, R.A., and Taulbee, J.D. (1987) The Rapid Hydrolysis and Efficient Absorption of Triglycerides with Octanoic Acid in the 2 Position, Am. J. Clin. Nutr. 45, 940–945.

    PubMed  CAS  Google Scholar 

  20. Mu, H., Xu, X., and Høy, C.E. (1998) Production of Specific Structured Triacylglycerols by Lipase-Catalyzed Interesterification in a Laboratory Scale Continuous Reactor, J. Am. Oil Chem. Soc. 75, 1187–1193.

    CAS  Google Scholar 

  21. Mu, H., Kalo, P., Xu, X., and Høy, C.-E. (2000) Chromatographic Methods in the Monitoring of Lipase-Catalyzed Interesterification, Fett/Lipid, In press.

  22. Becker, C.C., Rosenquist, A., and Hølmer, G. (1993) Regiospecific Analysis of Triacylglycerols Using Allyl Magnesium Bromide, Lipids 28, 147–149.

    Google Scholar 

  23. Thomson, A.B.R., Keelan, M., Garg, M.L., and Clandinin, M.T. (1989) Intestinal Aspects of Lipid Absorption: in Review, Can. J. Physiol. Pharmacol. 67, 179–191.

    PubMed  CAS  Google Scholar 

  24. Åkesson, B., Gronowitz, S., Herslöf, B., and Ohlson, R. (1978) Absorption of Synthetic, Stereochemically Defined Acylglycerols in the Rat, Lipids 13, 338–343.

    PubMed  Google Scholar 

  25. Mead, J.F., Alfin-Slater, R.B., Howton, D.R., and Popják, G. (1986) Digestion and Absorption of Lipids, pp. 255–272, Plenum Press, New York.

    Google Scholar 

  26. McDonald, G.B., Saunders, D.R., Weidman, M., and Fisher, L. (1980) Portal Venous Transport of Long-Chain Fatty Acids Absorbed from Rat Intestine, Am. J. Physiol. 239, G141-G150.

    PubMed  CAS  Google Scholar 

  27. McDonald, G.B., and Weidman, M. (1987) Partitioning of Polar Fatty Acids into Lymph and Portal Vein After Intestinal Absorption in the Rat, Q. J. Exp. Physiol. 72, 153–159.

    PubMed  CAS  Google Scholar 

  28. Bloom, B., Chaikoff, I.L., and Reinhardt, W.O. (1951) Intestinal Lymph as Pathway for Transport of Absorbed Fatty Acids of Different Chain Lengths, Am. J. Physiol. 166, 451–455.

    PubMed  CAS  Google Scholar 

  29. Temme, E.H., Mensink, R.P., and Hornstra, G. (1996) Comparison of the Effects of Diets Enriched in Lauric, Palmitic, or Oleic Acids on Serum Lipids and Lipoproteins in Healthy Women and Men, Am. J. Clin. Nutr. 63, 897–903.

    PubMed  CAS  Google Scholar 

  30. Grundy, S.M. (1994) Influence of Stearic Acid on Cholesterol Metabolism Relative to Other Long-Chain Fatty Acids, Am. J. Clin. Nutr. 60, 986S-990S.

    PubMed  CAS  Google Scholar 

  31. Woollett, L.A., Spady, K.K., and Dietschy, J.M. (1992) Regulatory Effects of the Saturated Fatty Acids 6∶0 Through 18∶0 on Hepatic Low Density Lipoprotein Receptor Activity in the Hamster, J. Clin. Invest. 89, 1133–1141.

    Article  PubMed  CAS  Google Scholar 

  32. Cater, N.B., Heller, H.J., and Denke, M.A. (1997) Comparison of the Effects of Medium-Chain Triacylglycerols, Palm Oil, and High Oleic Acid Sunflower Oil on Plasma Triacylglycerol Fatty Acids and Lipid and Lipoprotein Concentrations in Humans, Am. J. Clin. Nutr. 64, 41–45.

    Google Scholar 

  33. Wardlaw, G.M., Snook, J.T., Park, S., Patel, P.K., Pendley, F.C., Lee, M.S., and Jandacek, R. (1995) Relative Effects on Serum Lipids and Apolipoproteins of a Caprenin-rich Diet Compared with Diets Rich in Palm Oil/Palm-Kernel Oil or Butter. Am. J. Clin. Nutr. 61, 535–542.

    PubMed  CAS  Google Scholar 

  34. Nicolosi, R.J. (1997) Dietary Fat Saturation Effects on Low-Density-Lipoprotein Concentrations and Metabolism in Various Animal Models, Am. J. Clin. Nutr. 65, 1617S-1627S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Mu.

About this article

Cite this article

Mu, H., Høy, CE. Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids 35, 83–89 (2000). https://doi.org/10.1007/s11745-000-0498-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0498-x

Keywords

Navigation