Skip to main content
Log in

General characteristics of Pinus spp. Seed fatty acid compositions, and importance of Δ5-olefinic acids in the taxonomy and phylogeny of the genus

  • Review
  • Published:
Lipids

Abstract

The Δ5-unsaturated polymethylene-interrupted fatty acid (Δ5-UPIFA) contents and profiles of gymnosperm seeds are useful chemometric data for the taxonomy and phylogeny of that division, and these acids may also have some biomedical or nutritional applications. We recapitulate here all data available on pine (Pinus; the largest genus in the family Pinaceae) seed fatty acid (SFA) compositions, including 28 unpublished compositions. This overview encompasses 76 species, subspecies, and varieties, which is approximately one-half of all extant pines officially recognized at these taxon levels. Qualitatively, the SFA from all pine species analyzed so far are identical. The genus Pinus is coherently united—but this qualitative feature can be extended to the whole family Pinaceae—by the presence of Δ5-UPIFA with C18 [taxoleic (5,9–18∶2) and pinolenic (5,9,12–18∶3) acids] and C20 chains [5,11–20∶2, and sciadonic (5,11,14–20∶3) acids]. Not a single pine species was found so far with any of these acids missing. Linoleic acid is almost always, except in a few cases, the prominent SFA, in the range 40–60% of total fatty acids. The second habitual SFA is oleic acid, from 12 to 30%. Exceptions, however, occur, particularly in the Cembroides subsection, where oleic acid reaches ca. 45%, a value higher than that of linoleic acid. α-Linolenic acid, on the other hand, is a minor constituent of pine SFA, almost always less than 1%, but that would reach 2.7% in one species (P. merkusii). The sum of saturated acids [16∶0 (major) and 18∶0 (minor) acids principally] is most often less than 10% of total SFA, and anteiso-17∶0 acid is present in all species in amounts up to 0.3%. Regarding C18 Δ5-UPIFA, taxoleic acid reaches a maximum of 4.5% of total SFA, whereas pinolenic acid varies from 0.1 to 25.3%. The very minor coniferonic (5,9,12,15–18∶4) acid is less than 0.2% in all species. The C20 elongation product of pinolenic acid, bishomo-pinolenic (7,11,14–20∶3) acid, is a frequent though minor SFA constituent (maximum, 0.7%). When considering C20 Δ5-UPIFA, a difference is noted between the subgenera Strobus and Pinus. In the former subgenus, 5,11–20∶2 and sciadonic acids are ≤0.3 and ≤1.9%, respectively, whereas in the latter subgenus, they are most often ≥0.3 and ≥2.0%, respectively. The highest values for 5,11–20∶2 and sciadonic acids are 0.5% (many species) and 7.0% (P. pinaster). The 5,11,14,17–20∶4 (juniperonic) acid is present occasionally in trace amounts. The highest level of total Δ5-UPIFA is 30–31% (P. sylvestris), and the lowest level is 0.6% (P. monophylla). Uniting as well as discriminating features that may complement the knowledge about the taxonomy and phylogeny of pines are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

anteiso-17∶0:

14-methylhexadecanoic

FAME:

fatty acid methyl ester

GLC:

gas-liquid chromatography

SFA:

seed fatty acid

UPIFA:

unsaturated polymethylene-interrupted fatty acid

References

  1. Page, C.N. (1990) Gymnosperms: Coniferophytina (Conifers and Ginkgoids), in The Families and Genera of Vascular Plants (Kubitzki, K., ed.), Vol. 1, pp. 279–361, Pteridophytes and Gymnosperms (Kramer, K.U., and Green, P.S., eds.), Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  2. Farjon, A. (1998) World Checklist and Bibliography of Conifers, The Royal Botanic Gardens, Kew, United Kingdom.

    Google Scholar 

  3. Rothwell, G.W. (1982) New Interpretations of the Earliest Conifers, Rev. Palaeobot. Palynol. 37, 7–29.

    Article  Google Scholar 

  4. Miller, C.N., Jr. (1976) Early Evolution in the Pinaceae, Rev. Palaeobot. Palynol. 21, 101–117.

    Article  Google Scholar 

  5. Wolff, R.L., Deluc, L.G., Marpeau, A.M., and Comps, B. (1997) Chemotaxonomic Differentiation of Conifer Families and Genera Based on the Seed Oil Fatty Acid Compositions: Multivariate Analyses, Trees 12, 57–65.

    Article  Google Scholar 

  6. Wolff, R.L., Comps, B., Marpeau, A.M., and Deluc, L.G. (1997) Taxonomy of Pinus Species Based on the Seed Oil Fatty Acid Compositions, Trees 12, 113–118.

    Google Scholar 

  7. Wolff, R.L., Comps, B., Deluc, L.G., and Marpeau, A.M. (1997) Fatty Acids of the Seeds from Pine Species of the Ponderosa-Banksiana and Halepensis Sections. The Peculiar Taxonomic Position of Pinus pinaster, J. Am. Oil Chem. Soc. 74, 45–50.

    Google Scholar 

  8. Wolff, R.L. (1997) Discussion of the Term “Unusual” When Discussing Δ5-Olefinic Acids in Plant Lipids, J. Am. Oil Chem. Soc. 74, 619.

    CAS  Google Scholar 

  9. Wolff, R.L., Christie W.W., Pédrono, F., Marpeau, A.M., Tsevegsüren, N., Aitzetmüller, K., and Gunstone, F.D. (1999) Δ5-Olefinic Acids in the Seed Lipids from Four Ephedra Species and Their Distribution Between the α- and β-Positions of Triacylglycerols. Characteristics Common to Coniferophytes and Cycadophytes, Lipids 34, 855–864.

    Article  PubMed  CAS  Google Scholar 

  10. Wolff, R.L. (1999) The Phylogenetic Significance of Sciadonic (all-cis 5,11,14–20∶3) Acid in Gymnosperms and Its Quantitative Significance in Land Plants, J. Am. Oil Chem. Soc. 76, 1515–1516.

    CAS  Google Scholar 

  11. Berdeaux, O., and Wolff, R.L. (1996) Gas-Liquid Chromatography-Mass Spectrometry of the 4,4-Dimethyloxazoline Derivatives of Δ5-Unsaturated Polymethylene-Interrupted Fatty Acids from Conifer Seed Oils, J. Am. Oil Chem. Soc. 73, 1323–1326.

    Article  CAS  Google Scholar 

  12. Wolff, R.L., Christie, W.W., and Marpeau, A.M. (1999) Reinvestigation of the Polymethylene-Interrupted 18∶2 and 20∶2 Acids of Ginkgo biloba Seed Lipids, J. Am. Oil Chem. Soc. 76, 273–276.

    CAS  Google Scholar 

  13. Wolff, R.L., Pédrono, F., Marpeau, A.M., and Gunstone, F.D. (1999) The Seed Fatty Acid Composition and the Distribution of Δ5-Olefinic Acids in the Triacylglycerols of Some Taxares (Cephalotaxus and Podocarpus), J. Am. Oil Chem. Soc. 76, 469–473.

    CAS  Google Scholar 

  14. Wolff, R.L., Christie W.W., Pédrono, F., and Marpeau, A.M. (1999) Arachidonic, Eicosapentaenoic, and Biosynthetically Related Fatty Acids in the Seed Lipids from a Primitive Gymnosperm, Agathis robusta, Lipids 34, 1083–1097.

    Article  PubMed  CAS  Google Scholar 

  15. Gunstone, F.D., Seth, S., and Wolff, R.L. (1995) The Distribution of Δ5 Polyene Acids in Some Pine Seed Oils Between the α- and β-Chains by 13C-NMR Spectroscopy, Chem. Phys. Lipids 78, 89–96.

    Article  CAS  Google Scholar 

  16. Gunstone, F.D., and Wolff, R.L. (1997) Conifer Seed Oils: Distribution of Δ5 Acids Between α- and β-Chains by 13C Nuclear Magnetic Resonance Spectroscopy, J. Am. Oil Chem. Soc. 73, 1611–1613.

    Article  Google Scholar 

  17. Itabashi, Y., and Takagi, T. (1982) Cis-5-Olefinic Nonmethylene-Interrupted Fatty Acids in Lipids of Seeds, Arils, and Leaves of Japanese Yew, Yukagaku 31, 574–579.

    CAS  Google Scholar 

  18. Wolff, R.L., Deluc, L.G., and Marpeau, A.M. (1996) Conifer Seeds: Oil Content and Fatty Acid Distribution, J. Am. Oil Chem. Soc. 73, 765–771.

    Article  CAS  Google Scholar 

  19. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) Bishomopinolenic (7,11,14–20∶3) Acid in Pinaceae Seed Oils, J. Am. Oil Chem. Soc. 74, 1583–1586.

    CAS  Google Scholar 

  20. Berger, A., and German, J.B. (1991) Extensive Incorporation of Dietary Δ-5,11,14 Eicosatrienoate into the Phosphatidylinositol Pool, Biochim. Biophys. Acta 1085, 371–376.

    PubMed  CAS  Google Scholar 

  21. Ikeda, I., Oka, T., Koba, K., Sugano, M., and Lie Ken Jie, M.S.F. (1992) 5c,11c,14c Eicosatrienoic and 5c,11c,14c,17c-Eicosatetraenoic Acid of Biota orientalis Seed Oil Affect Lipid Metabolism in the Rat, Lipids 27, 500–504.

    PubMed  CAS  Google Scholar 

  22. Sugano, M., Ikeda, I., and Lie Ken Jie, M.S.F. (1992) Polyunsaturated Fatty Acid Regulation of Cholesterol Metabolism and Eicosanoid Production in Rats: Effects of Uncommon Fatty Acids, in Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress (Sinclair, A., and Gibson, R., eds.) pp. 268–270, American Oil Chemists’ Society, Champaign.

    Google Scholar 

  23. Berger, A., Fenz, R., and German, J.B. (1993) Incorporation of Dietary 5,11,14-Icosatrienoate into Various Mouse Phospholipid Classes and Tissues, J. Nutr. Biochem. 4, 409–420.

    Article  CAS  Google Scholar 

  24. Sugano, M., Ikeda, I., Wakamatsu, K., and Oka, T. (1994) Influence of Korean Pine (Pinus koraiensis)-Seed Oil Containing cis-5, cis-9,cis-12-Octadecatrienoic Acid on Polyunsaturated Fatty Acid Metabolism, Eicosanoid Production and Blood Pressure of Rats, Br. J. Nutr. 72, 775–783.

    Article  PubMed  CAS  Google Scholar 

  25. Lai, L.T., Naiki, M., Yoshida, S.H., German, J.B., and Gerschwin, M.E. (1994) Dietary Platycladus orientalis Seed Oil Suppresses Anti-Erythrocyte Autoantibodies and Prolongs Survival of NZB Mice, Clin. Immunol. Immunopathol. 71, 293–302.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuo, N., Osada, K., Kodama, T., Lim, B.O., Nakao, A., Yamada, K., and Sugano, M. (1996) Effects of Gamma-Linolenic Acid and Its Positional Isomer Pinolenic Acid on Immune Parameters of Brown-Norway Rats, Prostaglandins Leukotrienes Essent. Fatty Acids 55, 223–229.

    Article  CAS  Google Scholar 

  27. Yoshida, S.H., Siu, J., Griffey, S.M., German, J.B., and Gerschwin, M.E. (1996) Dietary Juniperis virginiensis (sic) Seed Oil Decreased Pentobarbital-Associated Mortalities Among DBA/1 Mice Treated with Collagen-Adjuvant Emulsions, J. Lipid Mediat. Cell. Signal. 13, 283–293.

    Article  PubMed  CAS  Google Scholar 

  28. Chavali, S.R., Weeks, C.E., Zhong, W.W., and Forse, R.A. (1998) Increased Production of TNF-α and Decreased Levels of Dienoic Eicosanoids, IL-6 and IL-10 in Mice Fed Menhaden Oil and Juniper Oil Diets in Response to an Intraperitoneal Lethal Dose of LPS, Prostaglandins Leukotrienes Essent. Fatty Acids 59, 89–93.

    Article  CAS  Google Scholar 

  29. Asset, G., Staels, B., Wolff, R.L., Baugé, E., Fruchart, J.C., and Dallongeville, J. (1999) Effects of Pinus pinaster and Pinus koraiensis Seed Oil Supplementation on Lipoprotein Metabolism in Rats, Lipids 34, 39–44.

    Article  PubMed  CAS  Google Scholar 

  30. Wolff, R.L. (1997) New Tools to Explore Lipid Metabolism, INFORM 8, 116–119.

    Google Scholar 

  31. Wolff, R.L., Marpeau, A.M., Gunstone, F.D., Bézard, J., Farines, M., Martin, J.C., and Dallongeville, J. (1997) Particularités Structurales et Physiologiques d’Huiles Nouvelles, les Huiles de Graines de Conifères, Oléagineux 4, 65–70 (in French).

    CAS  Google Scholar 

  32. Aitzetmüller, K. (1998) Komaroffia Oils—An Excellent New Source of Δ5-Unsaturated Fatty Acids, J. Am. Oil Chem. Soc. 75, 1897–1899.

    Google Scholar 

  33. Takagi, T., and Itabashi, Y. (1982) cis-5 Olefinic Unusual Fatty Acids in Seed Lipids of Gymnospermae and Their Distribution in Triacylglycerols, Lipids 17, 716–723.

    CAS  Google Scholar 

  34. Groenewald, E.G., and van der Westhuizen, J. (1997) Prostaglandins and Related Substances in Plants, Bot. Rev. 63, 199–220.

    Google Scholar 

  35. Jamieson, G.R., and Reid, E.H. (1972) The Leaf Lipids of Some Conifer Species, Phytochemistry 11, 269–275.

    Article  CAS  Google Scholar 

  36. Wolff, R.L., Christie, W.W., and Coakley, D. (1997) The Unusual Occurrence of 14-Methylhexadecanoic Acid in Pinaceae Seed Oils Among Plants, Lipids 32, 971–973.

    Article  PubMed  CAS  Google Scholar 

  37. Little, E.L., Jr., and Critchfield, W.B. (1969) Subdivision of the Genus Pinus (Pines), U.S. Department of Agriculture, Forest Service, Miscellaneous Publication No. 1144, Washington, DC, 51 pp.

  38. Debazac, E.B. (1964) Manuel des Conifères, Ecole Nationale des Eaux et Forêts, Nancy, pp. 23–112 (in French).

    Google Scholar 

  39. Mirov, N.T. (1961) Composition of Gum Turpentines of Pines, U.S. Department of Agriculture, Forest Service Technical Bulletin No. 1239, Washington, DC, 158 pp.

  40. Critchfield, W.B. (1986) Hybridization and Classification of the White Pines (Pinus Section Strobus), Taxon 35, 647–656.

    Article  Google Scholar 

  41. Klaus, W. (1989) Mediterranean Pines and Their History, Plant Syst. Evol. 162, 133–163.

    Article  Google Scholar 

  42. Farjon, A., and Styles, B. (1997) Pinus L. (Pinaceae) Flora Neotropica Monograph 75, New York Botanical Garden. Bronx, New York.

    Google Scholar 

  43. Malusa, J. (1992) Phylogeny and Biogeography of the Pinyon Pines (Pinus subsect. Cembroides), Syst. Bot. 17, 42–66.

    Article  Google Scholar 

  44. Strauss, S.H., and Doerksen, A.H. (1990) Restriction Fragment Analysis of Pine Phylogeny, Evolution 44 1081–1096.

    Article  CAS  Google Scholar 

  45. Wang, X.-R., and Szmidt, A.I. (1993) Chloroplast DNA-Based Phylogeny of Asian Pinus Species (Pinaceae), Plant Syst. Evol. 188, 197–211.

    Article  Google Scholar 

  46. Chaw, S.-M., Zharkikh, A., Sung, H.-M., Lau, T.-C., and Li, W.-H. (1997) Molecular Phylogeny of Extant Gymnosperms and Seed Plant Evolution: Analysis of Nuclear 18S rRNA Sequences, Molec. Biol. Evol. 14, 56–60.

    PubMed  CAS  Google Scholar 

  47. Carlisle, A., (1958) A Guide to the Named Variants of Scots Pine (Pinus sylvestris Linnaeus), Forestry (Oxford) 31, 203–224.

    Google Scholar 

  48. Christensen, K.I. (1987) Taxonomic Revision of the Pinus mugo Complex and P. x rhaetica (P. mugo x sylvestris) (Pinaceae), Nord. J. Bot. 7, 383–408.

    Google Scholar 

  49. Tillman-Sutela, E., Johanson, A., Laakso, R., Mattila, T., and Kallio, H. (1995) Triacylglycerols in the Seeds of Northern Scots Pine, Pinus sylvestris L. and Norway Spruce, Picea abies (L.) Karst, Trees 10, 40–45.

    Article  Google Scholar 

  50. Wolff, R.L., Pédrono, F., and Marpeau, A.M. (1999) Fatty Acid Composition of Edible Pine Seeds with Emphasis on North American and Mexican Pines of the Cembroides Subsection, Oléagineux 6, 107–110.

    CAS  Google Scholar 

  51. Hirata, Y., Sekiguchi, R., Saitoh, M., Kubota, K., and Kayama, M. (1994) Components of Pine Seed Lipids, Yukagaku 43, 579–582 (in Japanese).

    CAS  Google Scholar 

  52. Imbs, A.B., and Pham, L.Q. (1996) Fatty Acids and Triacylglycerols in Seeds of Pinaceae Species, Phytochemistry 42, 1051–1053.

    Article  CAS  Google Scholar 

  53. Kim, S.-J., Kim, G.-S., Yi, M.-O., and Joh, Y.-G. (1992) Fatty Acid Compositions of Some Seed Oils from the Pinaceae Family, J. Korean Oil Chem. Soc. 9, 149–156 (in Korean).

    Google Scholar 

  54. Hu, Z.-L., Li, X.-P., and Bao, H. (1992) Distribution of Fatty Acids from the Pinus Seed Oils and the Chemotaxonomic Survey, J. Plant Res. Environ. (Zhiwu Ziyuan Yu Huanjing) 1, 15–18 (in Chinese).

    CAS  Google Scholar 

  55. Wolff, R.L., and Bayard, C.C. (1995) Fatty Acid Composition of Some Pine Seed Oils, J. Am. Oil Chem. Soc. 72, 1043–1046.

    CAS  Google Scholar 

  56. Wolff, R.L., and Marpeau, A.M. (1997) Δ5-Olefinic Acids in the Edible Seeds of Nut Pine (Pinus cembroides edulis) from the United States, J. Am. Oil Chem. Soc. 74, 613–614.

    CAS  Google Scholar 

  57. Wolff, R.L. (1998) A Practical Source of Δ5-Olefinic Acids for Identification Purposes, J. Am. Oil Chem. Soc. 75, 891–892.

    CAS  Google Scholar 

  58. Imbs, A.B., Nevshupova, N.V., and Pham, L.Q. (1998) Triacyl Composition of Pinus koraiensis Seed Oil, J. Am. Oil Chem. Soc. 75, 865–870.

    CAS  Google Scholar 

  59. De Ferré, Y. (1966) Validité de l’Espèce Pinus pumila et Affinités Systématiques, Bull. Soc. Hist. Nat. Toulouse 102, 351–356 (in French).

    Google Scholar 

  60. Zavarin, E., Snajberk, K., and Cool, L. (1990) Chemical Differentiation in Relation to the Morphology of the Single-Needle Pinyons, Biochem. Syst. Ecol. 18, 125–137.

    Article  CAS  Google Scholar 

  61. Sagrero-Nieves, L. (1992) Fatty Acid Composition of Mexican Nut (Pinus cembroides) from Three Seed Coat Phenotypes, J. Sci. Food Agric. 59, 413–414.

    Article  CAS  Google Scholar 

  62. Zavarin, E. (1987) Taxonomy of Pinyon Pines, in Proceedings of Il Simposio Nacional sobre Pinos Piñoneros (Passini, M.F., Tovar, D.C., and Eguiluz Piedra, T., eds.), pp. 29–40, CEMCA, Mexico City, Mexico.

    Google Scholar 

  63. Janick, J., Cabral Velho, C., and Whipkey, A. (1991) Developmental Changes in Seeds of Loblolly Pine, J. Am. Soc. Hort. Sci. 116, 297–301.

    CAS  Google Scholar 

  64. Laseter, J.L., Lawler, G.C., Walkinshaw, C.H., and Weete, J.D. (1972) Fatty Acids of Pinus elliottii Tissues, Phytochemistry 12, 817–821.

    Article  Google Scholar 

  65. Yazicioglu, T., and Karaali, A. (1983) On the Fatty Acid Compostion of Turkish Vegetable Oils, Fette Seifen Anstrichm. 85, 23–29.

    Article  CAS  Google Scholar 

  66. Ickert-Bond, S.M. (1997) Pinus krempfii Lec.—A Vietnamese Conifer with Problematic Affinities, Am. J. Bot. 84, 203 (abstract).

    Google Scholar 

  67. Frankis, M.P. (1988) Generic Inter-Relationships in Pinaceae, Notes RBG Edinb. 45, 527–548.

    Google Scholar 

  68. Hart, J.A. (1987) A Cladistic Analysis of Conifers: Preliminary Results, J. Arnold Arbor. 68, 269–307.

    Google Scholar 

  69. Price, R.A., and Olsen-Stojkovich, J. (1987) Relationships Among the Genera of Pinaceae: An Immunological Comparison, Syst. Bot. 12, 91–97.

    Article  Google Scholar 

  70. Prager, E.M., Fowler, D.P., and Wilson, A. (1976) Rates of Evolution in Conifers (Pinaceae), Evolution 30, 637–649.

    Article  Google Scholar 

  71. Suzuki, M. (1979) The Course of Resin Canals in the Shoots of Conifers. III. Pinaceae and Summary Analysis, Bot. Mag. Tokyo 92, 333–353.

    Article  Google Scholar 

  72. Aitzetmüller, K., and Tsevegsüren, N. (1994) Seed Fatty Acids, “Front-End”-Desaturases and Chemotaxonomy—A Case Study in the Ranunculaceae, J. Plant Physiol. 143, 538–543.

    Google Scholar 

  73. Berger, J.J. (1999) Additif Alimentaire, Composition Cosmétique et Médicament à Base d’Huile de Graines de Pin, French Patent 96 14794.

  74. Medvedev, F.A., Kilakova, S.J., and Levatchev, M.M. (1992) Characteristics of Fatty Acid Composition of Pine Kernels in Siberia and Far East, Voprosy Pitania 2, 70–71 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Wolff.

About this article

Cite this article

Wolff, R.L., Pédrono, F., Pasquier, E. et al. General characteristics of Pinus spp. Seed fatty acid compositions, and importance of Δ5-olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35, 1–22 (2000). https://doi.org/10.1007/s11745-000-0489-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0489-y

Keywords

Navigation