Skip to main content
Log in

Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat

  • Published:
Lipids

Abstract

The aim of the present study was to assess the effect of vegetal oils obtained from Pinus pinaster and P. koraiensis seeds on plasma lipoprotein levels and apolipoprotein (apo) gene expression in rats. These oils contain two particular fatty acids of the Δ5-unsaturated polymethylene-interrupted fatty acid (Δ5-UPIFA) family: all-cis-5,9,12-18:3 (pinolenic) and/or all-cis-5,11,14-20:3 (sciadonic) acids. Rats were fed for 28 d a diet containing 5% (w/w) oil supplement. Two control diets were prepared to match the fatty acid composition of P. pinaster or P. koraiensis oils with the exception of Δ5-UPIFA, which were replaced by oleic acid. Pinus pinaster seed oil decreased serum triglycerides by 30% (P<0.02), very low density lipoprotein (VLDL)-triglycerides by 40% (P<0.01), and VLDL-cholesterol by 33% (P<0.03). Pinus koraiensis seed oil decreased serum triglycerides by 16% [not statistically significant (ns)] and VLDL-triglycerides by 21% (ns). Gel permeation chromatography and nondenaturating polyacrylamide gel electrophoresis showed a tendency of high density lipoprotein to shift toward larger particles in pine seed oil-supplemented rats. Finally, P. pinaster seed oil treatment was associated with a small decrease of liver apoC-III (P<0.02) but not in apoE, apoA-I, or apoA-II mRNA levels. The levels of circulating apo were not affected by pine seed oil supplementation. In conclusion, P. pinaster seed oil has a triglyceride-lowering effect in rats, an effect that is due to a reduction in circulating VLDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apo:

apolipoprotein

FAME:

fatty acid methyl ester

HDL:

high density lipoprotein

ns:

not statistically significant

PBS:

phosphate buffered saline

UPIFA:

unsaturated polymethylene-interrupted fatty acid

VLDL:

very low density lipoprotein

References

  1. Lichtenstein, A.H. (1996) Dietary Fatty Acids and Lipoprotein Metabolism, Curr. Opin. Lipidol. 7, 155–161.

    Article  PubMed  CAS  Google Scholar 

  2. Takagi, T., and Itabashi, Y. (1982) Cis-5-Olefinic Unusual Fatty Acids in Seed Lipids of Gymnospermae and Their Distribution in Triglycerides, Lipids 17, 716–723.

    CAS  Google Scholar 

  3. Wolff, R.L., and Bayard, C.C. (1995) Fatty Acid Composition of Some Pine Seed Oils, J. Am. Oil Chem. Soc. 72, 1043–1046.

    CAS  Google Scholar 

  4. Wolff, R.L., Deluc, L.G., and Marpeau, A.M. (1996) Conifer Seeds: Oil Content and Fatty Acid Composition, J. Am. Oil Chem. Soc. 73, 765–771.

    Article  CAS  Google Scholar 

  5. Ikeda, I., Oka, T., Koba, K., Sugano, M., and Lie Ken Jie, M.S.F. (1992) 5c,11c,14c-Eicosatrienoic Acid and 5c,11c,14c,17c-Eicosatetraenoic Acid of Biota orientalis Seed Oil Affect Lipid Metabolism in the Rat, Lipids 27, 500–504.

    PubMed  CAS  Google Scholar 

  6. Sugano, M., Ikeda, I., Wakamatsu, K., and Oka, T. (1994) Influence of Korean Pine (Pinus koraiensis)-Seed Oil Containing cis-5, cis-9,cis-12-Octadecatrienoic Acid on Polyunsaturated Fatty Acid Metabolism, Eicosanoid Production and Blood Pressure of Rats, Br. J. Nutr. 72, 775–783.

    Article  PubMed  CAS  Google Scholar 

  7. Baillie, R.A., Jump, D.B., and Clarke, S.D. (1996) Specific Effects of Polyunsaturated Fatty Acids on Gene Expression, Curr. Opin. Lipidol. 7, 53–55.

    Article  PubMed  CAS  Google Scholar 

  8. Kushi, L.H., Lenart, E.B., and Willett, W.C. (1995) Health Implications of Mediterranean Diets in Light of Contemporary Knowledge. 2. Meat, Wine, Fats, and Oils, Am. J. Clin. Nutr. 61, 1416S-1427S.

    PubMed  CAS  Google Scholar 

  9. Folch, J., Lees, M., and Sloane-Stanley, G.M. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  10. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Trifluoride, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  11. Wolff, R.L., Deluc, L.G., and Marpeau, A.M. (1996) Conifer Seeds: Oil Content and Fatty Acid Composition, Ibid. 73, 765–771.

    CAS  Google Scholar 

  12. Berdeaux, O., and Wolff, R.L. (1996) Gas-Liquid Chromatography-Mass Spectrometry of the 4,4-Dimethyloxazoline Derivatives of Δ5-Unsaturated Polymethylene-Interrupted Fatty Acids from Conifer Seed Oils, J. Am. Oil Chem. Soc. 73, 1323–1326.

    Article  CAS  Google Scholar 

  13. Traber, M.G., Kayden, H.J., and Rindler, M.J. (1987) Polarized Secretion of Newly Synthesized Lipoproteins by CaCo-2 Human Intestinal Cell Line, J. Lipid Res. 28, 1350–1363.

    PubMed  CAS  Google Scholar 

  14. Lipid Research Clinics Program (1974) Manual of Laboratory Operations: Volume 1, in Lipid and Lipoprotein Analysis, Washington, DC, U.S. Government Printing Office.

    Google Scholar 

  15. Noble, P. (1968) Electrophoresis Separation of Plasma Lipoproteins in Agarose Gels, J. Lipid Res. 9, 693–700.

    PubMed  CAS  Google Scholar 

  16. Chomczynski, P., and Sacchi, N. (1987) Single-Step Method for RNA Isolation by Acid Guanidinium-Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  17. Staels, B., Auwerx, J., Chan, L., van Tol, A., Rosseneu, M., and Verhoeven, G. (1989) Influence of Development, Oestrogens and Food Intake on Apolipoprotein A-I, A-II and E mRNA in the Rat Liver Intestine, J. Lipid Res. 30, 1137–1145.

    PubMed  CAS  Google Scholar 

  18. Staels, B., van Tol, A., Chan, L., Verhoeven, G., and Auwerx, J. (1991) Variable Effects of Different Corticosteroids on Plasma Lipids, Apolipoproteins, and Hepatic Apolipoprotein mRNA Levels in Rats, Arterioscler. Thromb. 11, 760–769.

    PubMed  CAS  Google Scholar 

  19. Staels, B., Vu-Dac, N., Kosykh, V., Fruchart, J.C., Dallongeville, J., and Auwerx, J. (1995) Fibrates Down Regulate Apolipoprotein (apo) C-III Expression by a Mechanism Independent of Peroxisomal Enzyme Induction. A Potential Mechanism for the Hypolipidemic Action of Fibrates, J. Clin. Invest. 95, 705–712.

    PubMed  CAS  Google Scholar 

  20. Harris, W.S. (1989) Fish Oil and Plasma Lipoprotein Metabolism in Humans: A Critical Review, J. Lipid. Res. 30, 785–807.

    PubMed  CAS  Google Scholar 

  21. Hayes, K.C., and Khosla, P. (1992) Dietary Fatty Acid Thresholds and Cholesterolemia, FASEB J. 6, 2600–2607.

    PubMed  CAS  Google Scholar 

  22. Carroll, K.K. (1971) Plasma Cholesterol Levels and Liver Cholesterol Biosynthesis in Rabbits Fed Commercial or Semisynthetic Diets with and without Added Fats or Oils, Atherosclerosis 13, 67–76.

    Article  PubMed  CAS  Google Scholar 

  23. Nicolosi, R.J., Stucchi, A.F., Kowala, M.C., Hennessy, L.K., Hegsted, D.M., and Schhaefer, E.J. (1990) Effect of Dietary Fat Saturation and Cholesterol on LDL Composition and Metabolism. In vivo Studies of Receptor and Nonreceptor-Mediated Catabolism of LDL in Cebus Monkeys, Arterioscler. Thromb. 10, 119–128.

    CAS  Google Scholar 

  24. Chong, K.S., Nicolosi, R.J., Rodger, R.F., Arrigo, D.A., Yuan, R.W., MacKey, J.J., Georras, S., and Hebert, P.N. (1987) Effect of Dietary Fat Saturation on Plasma Lipoproteins and High Density Lipoprotein Metabolism of Rhesus Monkey, J. Clin. Invest. 79, 675–683.

    PubMed  CAS  Google Scholar 

  25. Lagrost, L., Persegol, L., Lallemant, C., and Gambert, P. (1994) Influence of Apolipoprotein Composition of High Density Lipoprotein Particles on Cholesteryl Ester Transfer Protein Activity. Particles Containing Various Proportions of Apolipoproteins AI and AII, J. Biol. Chem. 269, 3189–3197.

    PubMed  CAS  Google Scholar 

  26. Linton, M.F., Hasty, A.H., Babaev, V.R., and Fazio, S. (1998) Hepatic Apo E Expression is Required for Remnant Lipoprotein Clearance in the Absence of the Low Density Lipoprotein Receptor, J. Clin. Invest. 101, 1726–1736.

    PubMed  CAS  Google Scholar 

  27. Wang, C.S., McConathy, W.J., Kloer, H.U., and Alaupovic, P. (1985) Modulation of Lipoprotein Lipase Activity by Apolipoproteins. Effect of Apolipoprotein C-III, J. Clin. Invest. 75, 384–390.

    PubMed  CAS  Google Scholar 

  28. Thuren, T., Wilcox, R.W., Sisson, P., and Waite, M. (1991) Hepatic Lipase Hydrolysis of Lipid Monolayers. Regulation by Apolipoproteins, J. Biol. Chem. 266, 4853–4861.

    PubMed  CAS  Google Scholar 

  29. Kinnunen, P.K.J., and Ehnholm, C. (1976) Effect of Serum and ApoC-Apoproteins from Very Low Density Lipoproteins on Human Postheparin Plasma Hepatic Lipase, FEBS Lett. 65, 354–357.

    Article  PubMed  CAS  Google Scholar 

  30. McConathy, W.J., Gesquiere, J.C., Bass, H., Tartar, A., Fruchart, J.C., and Wang, C.S. (1992) Inhibition of Lipoprotein Lipase Activity by Synthetic Peptides of Apolipoprotein C-III, J. Lipid Res. 33, 995–1003.

    PubMed  CAS  Google Scholar 

  31. Windler, E., and Havel, R.J. (1985) Inhibitory Effects of C Apolipoproteins from Rats and Humans on the Uptake of Triglyceride-Rich Lipoproteins and Their Remnants by the Perfused Rat Liver, J. Lipid Res. 26, 556–565.

    PubMed  CAS  Google Scholar 

  32. Quarfordt, S.H., Michalopoulos, G., and Schirmer, B. (1982) The Effect of Human C Apolipoproteins of the in vitro Hepatic Metabolism of Triglyceride Emulsions in the Rat, J. Biol. Chem. 257, 14642–14647.

    PubMed  CAS  Google Scholar 

  33. Windler, E., Chao, Y., and Havel, R.J. (1980) Regulation of the Hepatic Uptake of Triglyceride-Rich Lipoproteins in the Rat, J. Biol. Chem. 255, 8303–8307.

    PubMed  CAS  Google Scholar 

  34. Shelburne, F., Hanks, J., Meyers, W., and Quarfordt, S. (1980) Effect of Apoproteins on the Hepatic Uptake of Triglyceride Emulsions in the Rat, J. Clin. Invest. 65, 652–658.

    Article  PubMed  CAS  Google Scholar 

  35. Ribeiro, A., Mangeney, M., Cardot, P., Loriette, C., Chambaz, J., Rayssiguier, Y., and Bereziat, G. (1992) Nutrional Regulation of Apolipoprotein Genes. Effect of Dietary Carbohydrates and Fatty Acids, Diabete Metab. 18 (1Pt2), 137–144.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Asset, G., Staels, B., Wolff, R.L. et al. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34, 39–44 (1999). https://doi.org/10.1007/s11745-999-335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-335-2

Keywords

Navigation