Skip to main content
Log in

Micellar Growth in Cetylpyridinium Chloride/Alcohol System: Role of Long Chain Alcohol, Electrolyte and Surfactant Head Group

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The microstructural transition of aqueous 0.1 M cetylpyridinium chloride (CPC) in the combined presence of salt KBr and long chain alcohol (C9OH-C12OH) has been studied as a function of alcohol concentration, electrolyte concentration and temperature. The viscosity of the CPC/KBr micellar system showed a peaked behavior with alcohol concentration (C 0), due to alcohol induced structural transition, which was confirmed by dynamic light scattering (DLS) and rheological analysis. Besides C 0, the chain length of alcohol (n) was found to show a remarkable effect on the micellization behavior of CPC/KBr system. It was observed that the ability of alcohol to induce micelle growth diminishes with n, which was well supported by viscosity, rheology and DLS measurements. To examine the effect of the electrolyte on the micellar growth, the salt concentration was varied from 0.05 to 0.15 M and it was observed that with increase in [KBr], the peak position shifts towards lower C 0. The effect of temperature on the micellar system showed interesting phase behavior for CPC/KBr/Decanol. The system exhibited a closed solubility loop with an upper critical solution temperature (UCST) > the lower critical solution temperature (LCST), reminiscence of nicotine-water system. The role of surfactant head group on the structural evolution was revealed by comparing the present results with our previous report for similar micellar system, CTAB/KBr/long chain alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Scheme 4
Fig. 11

Similar content being viewed by others

References

  1. Wennerstorm H, Lindman B (1979) Micelles, physical chemistry of surfactant association. Phys Rep 52:1–86

    Article  Google Scholar 

  2. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C 99:3–48

    Article  CAS  Google Scholar 

  3. Menger FM (1979) The structure of micelles. Acc Chem Res 12:111–117

    Article  CAS  Google Scholar 

  4. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  CAS  Google Scholar 

  5. Kern F, Zana R, Candau SJ (1991) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 7:1344–1351

    Article  CAS  Google Scholar 

  6. Yin H, Lei S, Zhu S, Huang J, Ye J (2006) Micelle-to-vesicle transition induced by organic additives in catanionic surfactant systems. Chem Eur J 12:2825–2835

    Article  CAS  Google Scholar 

  7. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675

    Article  CAS  Google Scholar 

  8. Kabir-ud-Din, Kumar S, Aswal VK, Goyal PS (1996) Effect of the addition of n-alkylamines on the growth of sodium decyl sulfate micelles. J Chem Soc Faraday Trans 92:2413–2415

    Article  CAS  Google Scholar 

  9. Patel V, Dharaiya N, Ray D, Aswal VK, Bahadur P (2014) pH controlled size/shape in CTAB micelles with solubilized polar additives: a viscometry, scattering and spectral evaluation. Colloids Surf A 455:67–75

    Article  CAS  Google Scholar 

  10. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 277:601–629

    Article  Google Scholar 

  11. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    Article  CAS  Google Scholar 

  12. Rodrigues RK, Silva MA, Sabadini E (2008) Worm-like micelles of CTAB and sodium salicylate under turbulent flow. Langmuir 24:13875–13879

    Article  CAS  Google Scholar 

  13. Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Pet Sci Eng 71:23–29

    Article  CAS  Google Scholar 

  14. Kumar GP, Rajeshwarrao P (2011) Non-ionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1:208–219

    Article  Google Scholar 

  15. Zhu X, Rohling R, Filonenko G, Mezari B, Hofmann JP, Asahina S, Emiel JMH (2014) Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. Chem Commun 50:14658–14661

    Article  CAS  Google Scholar 

  16. Zana R (1995) Aqueous surfactant-alcohol systems: a review. Adv Colloid Interface Sci 57:1–64

    Article  CAS  Google Scholar 

  17. Zana R, Yiv S, Strazielle C, Lianos P (1981) Effect of alcohol on the properties of micellar systems: I. Critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions. J Colloid Interface Sci 80:208–223

    Article  CAS  Google Scholar 

  18. Aamodt M, Landgren M, Jonsson B (1992) Solubilization of uncharged molecules in ionic surfactant aggregates. 1. The micellar phase. J Phys Chem 96:945–950

    Article  CAS  Google Scholar 

  19. Caponetti E, Chillura D, Floriano MA, Triolo R (1997) Localization of n-alcohols and structural effects in aqueous solutions of sodium dodecyl sulfate. Langmuir 13:3277–3283

    Article  CAS  Google Scholar 

  20. Kuperkar KC, Mata JP, Bahadur P (2011) Effect of 1-alkanols/salt on the cationic surfactant micellar aqueous solutions-a dynamic light scattering study. Colloids Surf A 380:60–65

    Article  CAS  Google Scholar 

  21. Sreejith L, Parathakkat S, Nair SM, Kumar S, Varma G, Hassan PA, Talmon Y (2011) Octanol-triggered self-assemblies of the CTAB/KBr system: a microstructural study. J Phys Chem B 115:464–470

    Article  CAS  Google Scholar 

  22. Kabir-ud-Din, Bansal D, Kumar S (1997) Synergistic effect of salts and organic additives on the micellar association of cetylpyridinium chloride. Langmuir 13:5071–5075

    Article  CAS  Google Scholar 

  23. Kumar S, Bansal D, Kabir-ud-Din (1999) Micellar growth in the presence of salts and aromatic hydrocarbons: influence of the nature of the salt. Langmuir 15:4960–4965

    Article  CAS  Google Scholar 

  24. Kumar S, Ahmad Khan Z, Kabir-ud-Din (2002) Micellar association in simultaneous presence of organic salts/additives. J Surf Deterg 5:55–59

    Article  CAS  Google Scholar 

  25. Flory PJ (1965) Statistical thermodynamics of liquid mixtures. J Am Chem Soc 87:1833–1838

    Article  CAS  Google Scholar 

  26. Flory PJ, Orwoll RA, Vrij A (1964) Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. J Am Chem Soc 86:3507–3514

    Article  CAS  Google Scholar 

  27. Batigoc CI, Akbas H (2011) Spectrophotometric determination of cloud point of Brij 35 nonionic surfactant. Fluid Phase Equilib 303:91–95

    Article  CAS  Google Scholar 

  28. Gu T, Gomez PAG (1995) Clouding of Triton X-114: the effect of added electrolytes on the cloud point of Triton X-114 in the presence of ionic surfactants. Colloids Surf A 104:307–312

    Article  CAS  Google Scholar 

  29. Nilsson PG, Lindman B, Laughlin RG (1984) The upper consolute boundary in zwitterionic surfactant-water systems. J Phys Chem 88:6357–6362

    Article  CAS  Google Scholar 

  30. Polik WF, Burchard W (1983) Static light scattering from aqueous poly(ethylene oxide) solutions in the temperature range 20–90°C. Macromolecules 16:978–982

    Article  CAS  Google Scholar 

  31. Davies NA, Gillard RD (2000) The solubility loop of nicotine:water. Trans Met Chem. 25:628–629

    Article  CAS  Google Scholar 

  32. Anacker EW (1958) Light scattering by cetylpyridinium chloride solutions. J Phys Chem 62:41–45

    Article  CAS  Google Scholar 

  33. Choi DG, Kim WJ, Man Yang S (2000) Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions. Korea Aust Rhe J 12:143–146

    Google Scholar 

  34. Bhat M, Gaikar VG (2000) Characterization of interaction between butylbenzene sulfonates and cetyl pyridinium chloride in a mixed aggregate system. Langmuir 16:1580–1592

    Article  CAS  Google Scholar 

  35. Porte G, Gomati R, El Haitdmy, Appell J, Marignan J (1986) Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary systems (surfactant/alcohol/brine). J Phys Chem 90:5746–5751

    Article  CAS  Google Scholar 

  36. Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine. J Phys Chem 91:6203–6210

    Article  CAS  Google Scholar 

  37. Chung JJ, Lee SW, Kim YC (1992) Solubilization of alcohol in aqueous solution of cetyl pyridinium chloride. Bull Korean Chem Soc 13:647–649

    CAS  Google Scholar 

  38. Kabir-ud-Din Kumar S, Kirti Goyal PS (1996) Micellar growth in presence of alcohols and amines: a viscometric study. Langmuir 12:1490–1494

    Article  CAS  Google Scholar 

  39. Karayil J, Kumar S, Hassan PA, Talmon Y, Sreejith L (2015) Microstructural transition of aqueous CTAB micelles in the presence of long chain alcohols. RSC Adv 5:12434–12441

    Article  CAS  Google Scholar 

  40. Varade D, Joshi T, Aswal VK, Goyal PS, Hassan PA, Bahadur P (2005) Effect of salt on the micelles of cetyl pyridinium chloride. Colloids Surf A 259:95–101

    Article  CAS  Google Scholar 

  41. Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96:474–484

    Article  CAS  Google Scholar 

  42. Desai A, Varade D, Mata J, Aswal V, Bahadur P (2005) Structural transitions of cetyltrimethylammonium bromide micelles in aqueous media: effect of additives. Colloids Surf A 259:111–115

    Article  CAS  Google Scholar 

  43. Warr GG, Zemb TN, Drifford M (1990) Liquid–liquid phase separation in cationic micellar solutions. J Phys Chem 94:3086–3092

    Article  CAS  Google Scholar 

  44. Jansson M, Warr GG (1990) Self-diffusion coefficients in attractive ionic micelle solutions. J Colloid Interface Sci 140:541–544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. R. G. Joshi, (IGCAR) for his help in rheological analysis. Thanks are due to Dr. Ellina Kesselman and Dr. Judith Schmidt (Technion-Israel Institute of Technology) for their help in the Cryo-TEM analysis. The authors express their sincere gratitude to Professor Bing-Hung Chen (National Cheng Kung University, Taiwan) for his thoughts on the problem. The author JK is grateful to UGC for providing financial assistance (19-12/2010(i) EU-IV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Sreejith.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karayil, J., Kumar, S., Talmon, Y. et al. Micellar Growth in Cetylpyridinium Chloride/Alcohol System: Role of Long Chain Alcohol, Electrolyte and Surfactant Head Group. J Surfact Deterg 19, 849–860 (2016). https://doi.org/10.1007/s11743-016-1826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1826-7

Keywords

Navigation