Skip to main content
Log in

Micellar association in simultaneous presence of organic salts/additives

  • Published:
Journal of Surfactants and Detergents

Abstract

Viscosity measurements under Newtonian flow conditions had been performed on cetyltrimethylammonium bromide (CTAB) aqueous solutions in the combined presence of sodium salts of aromatic acids (sodium salicylate, NaSal; sodium benzoate, NaBen; sodium anthranilate, NaAn) and organic additives (1-hexanol, C6OH; n-hexylamine, C6NH2) at 30°C. On addition of C6OH or C6NH2, the viscosity of 25 mM CTAB solution remained nearly constant without salt as well as with a lower salt concentration. This is due to low CTAB concentration which is not sufficient to produce structural changes in this concentration range of salts. However, as the salt concentration was increased further, the effect of C6OH/C6NH2 addition was different with different salts: The viscosity first increased; then a decrease was observed with the former while with C6NH2 a decrease followed by constancy appeared in plots of relative viscosities (η r ) vs. organic additive concentrations. At further higher salt concentration, the magnitude of η r was much higher. The viscosity increase is explained in terms of micellar growth and the decrease in terms of swollen micelle formation (due to interior solubilization of organic additive) or micellar disintegration (due to formation of water + additive pseudophase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cates, M.E., and S.J. Candau, Statics and Dynamics of Worm-like Surfactant Micelles, J. Phys.: Condens. Matter 2:6869, (1990).

    Article  CAS  Google Scholar 

  2. Rehage, H., and H. Hoffmann, Viscoelastic Surfactant Solutions: Model for Rheological Research, Mol. Phys. 74:933 (1991).

    Article  CAS  Google Scholar 

  3. Imae, T., The Flexibility of Rodlike Micelles in Aqueous Solution and the Crossover Concentrations Among Dilute, Semidilute, and Concentrated Regimes, Colloid Polym. Sci. 267:707 (1989).

    Article  CAS  Google Scholar 

  4. Kumar, S., V.K. Aswal, H. N. Singh, P.S. Goyal, and Kabir-ud-Din, Growth of Sodium Dodecyl Sulfate Micelles in the Presence of n-Octylamine, Langmuir 10:4069 (1994).

    Article  CAS  Google Scholar 

  5. Prasad, C.D., H.N. Singh, P.S. Goyal, and K.S. Rao, Structural Transitions of CTAB Micelles in the Presence of n-Octylamine: A Small-Angle Neutron Scattering Study, J. Colloid Interface Sci. 155:415 (1993).

    Article  CAS  Google Scholar 

  6. Caponetti, E., D.C. Martino, M.A. Floriano, and R. Triolo, Localization of n-Alcohols and Structural Effects in Aqueous Solutions of Sodium Dodecyl Sulfate, Langmuir 13:3277 (1997).

    Article  CAS  Google Scholar 

  7. Kabir-ud-Din, S. Kumar, Kirti, and P.S. Goyal, Micellar Growth in Presence of Alcohols and Amines: A Viscometric Study, Langmuir 12:1490 (1996).

    Article  CAS  Google Scholar 

  8. Kabir-ud-Din, D. Bansal, and S. Kumar, Synergistic Effect of Salts and Organic Additives on the Micellar Association of Cetylpyridinium Chloride, Langmuir 13:5071 (1997).

    Article  CAS  Google Scholar 

  9. Kumar, S., D. Bansal, and Kabir-ud-Din, Micellar Growth in the Presence of Salts and Aromatic Hydrocarbons: Influence of the Nature of the Salt, Langmuir 15:4960 (1999).

    Article  CAS  Google Scholar 

  10. Kumar, S., A.Z. Naqvi, and Kabir-ud-Din, Micellar Morphology in the Presence of Salts and Organic Additives, Langmuir 16: 5252 (2000).

    Article  CAS  Google Scholar 

  11. Kumar, S., A.Z. Naqvi, and Kabir-ud-Din, Solubilization-Site-Dependent Micellar Morphology: Effect of Organic Additives and Quaternary Ammonium Bromides, Langmuir 17:4787 (2001).

    Article  CAS  Google Scholar 

  12. Gamboa, C., and L. Sepulveda, High Viscosities of Cationic and Anionic Micellar Solutions in the Presence of Added Salts, J. Colloid Interface Sci. 113:566 (1986).

    Article  CAS  Google Scholar 

  13. Aswal, V.K., P.S. Goyal, and P. Thiyagarajan, Small-Angle Neutron-Scattering and Viscosity Studies of CTAB/NaSal Viscoelastic Micellar Solutions, J. Phys. Chem. B 102:2469 (1998).

    Article  CAS  Google Scholar 

  14. Shikata, T., Y. Sakaiguchi, H. Uragami, A. Tamura, and H. Hirata, Enormously Elongated Cationic Surfactant Micelle Formed in CTAB-Aromatic Additive Systems, J. Colloid Interface Sci. 119:291 (1987).

    Article  CAS  Google Scholar 

  15. Imae, T., Light Scattering of Spinnable, Viscoelastic Solutions of Hexadecyltrimethylammonium Salicylate, J. Phys. Chem. 94: 5953 (1990).

    Article  CAS  Google Scholar 

  16. Quina, F.H., E.O. Alonso, and J.P.S. Farah Incorporation of Nonionic Solutes into Aqueous Micelles: A Linear Solvation Free Energy Relationship Analysis, J. Phys. Chem. 99:11708 (1995).

    Article  CAS  Google Scholar 

  17. Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers, J. Chem. Soc., Faraday Trans. 2 72:1525 (1976).

    Article  Google Scholar 

  18. Manohar, C., U.R.K. Rao, B.S. Valaulikar, and R.M. Iyer, On the Origin of Viscoelasticity in Micellar Solutions of Cetyltrimethylammonium Bromide and Sodium Salicylate, J. Chem. Soc., Chem. Commun.:379 (1986).

  19. Rao, U.R.K., C. Manohar, B.S. Valaulikar, and R.M. Iyer, Micellar Chain Model for the Origin of the Viscoelasticity in Dilute Surfactant Solutions, J. Phys. Chem. 91:3286 (1987).

    Article  CAS  Google Scholar 

  20. Verma, N.C., B.S. Valaulikar, and C. Manohar, Fluorescence Measurements on Viscoelastic Solutions of CTAB and Sodium Salicylate, J. Surface Sci. Technol. 3:19 (1987).

    CAS  Google Scholar 

  21. Sepulveda, L., E.A. Lissi, and F.H. Quina, Interactions of Neutral Molecules with Ionic Micelles, Adv. Colloid Interface Sci. 25:1 (1986).

    Article  CAS  Google Scholar 

  22. Mukerjee, P., Solubilization in Aqueous Micellar Systems, in Solution Chemistry of Surfactants, edited by K.L. Mittal, Plenum Press, New York, 1979.

    Google Scholar 

  23. Wormuth, K.R., and E.W. Kaler, Amines as Microemulsion Cosurfactants, J. Phys. Chem. 91:611 (1987).

    Article  CAS  Google Scholar 

  24. Cutler W.G., and E. Vissa, Detergency: Theory and Technology, Marcel Dekker, New York, 1987.

    Google Scholar 

  25. Hoffmann, H., and A. Sturmer, Solubilization of Siloxanes and Weakly Polar Organic Additives into Rodlike Micelles, Tenside Surfact. Deterg. 30:355 (1993).

    Google Scholar 

  26. Kabir-ud-Din, J.K.J. Salem, M.Z.A. Rafiquee, and Z. Khan, Effect of Cationic Micelles on the Kinetics of Interaction of Ninhydrin with l-Leucine and l-Phenylalanine, J. Colloid Interface Sci. 213:20 (1999).

    Article  CAS  Google Scholar 

  27. Scamehorn, J.F., S.D. Christian, and R.T. Ellington, Use of Micellar-Enhanced Ultrafiltration to Remove Multivalent Metal Ions from Aqueous Streams, in Surfactant Based Separation Processes, edited by J.F. Scamehorn and J.H. Harwell, Marcel Dekker, New York, 1989.

    Google Scholar 

  28. Oh, M.-H., W.-J. Kim, and S.-M. Yang, Effects of CPC/NaSal Wormlike Micelle on the Removal of tert-Butyl Phenol Using Micellar-Enhanced Ultrafiltration, Hwahak Konghak 38:20 (2000).

    CAS  Google Scholar 

  29. Gomati, R., J. Appell, P. Bassereau, J. Marignan, and G. Porte, Influence of the Nature of the Counterion and of Hexanol on the Phase Behavior of the Dilute Ternary Systems: Cetylpyridinium Bromide or Chloride-Hexanol-Brine, J. Phys. Chem. 91: 6203 (1987).

    Article  CAS  Google Scholar 

  30. Lindemuth, P.M., and G.L. Bertrand, Calorimetric Observation of the Transition of Spherical to Rodlike Micelles with Solubilized Organic Additives, J. Phys. Chem. 97:7769 (1993).

    Article  CAS  Google Scholar 

  31. Kumar, S., Kirti, and Kabir-ud-Din, Effect of Solubilized Amines on the Structural Transition of Cetyltrimethylammonium Bromide Micelles in Aqueous Potassium Bromide, J. Am. Oil Chem. Soc. 71:763 (1994).

    Google Scholar 

  32. Kabir-ud-Din, S. Kumar, V.K. Aswal, and P.S. Goyal, Effect of the Addition of n-Alkylamines on the Growth of Sodium Dodecyl Sulfate Micelles, J. Chem. Soc., Faraday Trans. 92:2413 (1996).

    Article  CAS  Google Scholar 

  33. Ozeki, S., and S. Ikeda, The Viscosity Behavior of Aqueous NaCl Solutions of Dodecyldimethylammonium Chloride and the Flexibility of Its Rod-Like Micelle, J. Colloid Interface Sci. 77: 219 (1980).

    Article  CAS  Google Scholar 

  34. Rehage, H., and H. Hoffmann, Rheological Properties of Viscoelastic Surfactant Systems, J. Phys. Chem. 92:4712 (1988).

    Article  CAS  Google Scholar 

  35. Menon, S.V.G., P.S. Goyal, B.A. Dasannacharya, S.K. Paranjpe, R.V. Mehta, and R.V. Upadhyay, When Does a Living Polymer Live?—Case of CTAB/NaSal, Physica B 213:604 (1995).

    Article  Google Scholar 

  36. Goyal, P.S., B.A. Dasannacharya, V.K. Kelkar, C. Manohar, K.S. Rao, and B.S. Valaulikar, Shapes and Size of Micelles in CTAB Solutions, Physica B 174:196 (1991).

    Article  CAS  Google Scholar 

  37. Lin, Z., J.J. Cai, L.E. Scriven, and H.T. Davis, Spherical-to-Wormlike Micelle Transition in CTAB Solutions, J. Phys. Chem. 98:5984 (1994).

    Article  CAS  Google Scholar 

  38. Kohler, H.-H., and J. Strnad, Evaluation of Viscosity Measurements of Dilute Solutions of Ionic Surfactants Forming Rod-Shaped Micelles, J. Phys. Chem. 94:7628 (1990).

    Article  CAS  Google Scholar 

  39. Hoiland, H., E. Ljosland, and S. Backlund, Solubilization of Alcohols and Alkanes in Aqueous Solution of Sodium Dodecyl Sulfate, J. Colloid Interface Sci. 101:467 (1984).

    Article  CAS  Google Scholar 

  40. Forland, G.M., J. Samseth, H. Hoiland, and K. Mortensen, The Effect of Medium Chain Length Alcohols on the Micellar Properties of Sodium Dodecyl Sulfate in Sodium Chloride Solutions, J. Colloid Interface Sci. 164:163 (1994).

    Article  Google Scholar 

  41. Yamashita, T., H. Yano, S. Harada, and T. Yasunaga, Kinetic Studies of the Hydrolysis of n-Octylamine on the Surface of a Sodium Dodecyl Micelle by the Ultrasonic Absorption Method, J. Phys. Chem. 87:5482 (1983).

    Article  CAS  Google Scholar 

  42. Zana, R., Aqueous Surfactant-Alcohol Systems: A Review, Adv. Colloid Interface Sci. 57:1 (1995).

    Article  CAS  Google Scholar 

  43. Hoffmann, H., and G. Ebert, Surfactants, Micelles and Fascinating Phenomenon, Angew. Chem. Int. Ed. Engl. 27:902 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir-ud-Din.

About this article

Cite this article

Kumar, S., Khan, Z.A. & Kabir-ud-Din Micellar association in simultaneous presence of organic salts/additives. J Surfact Deterg 5, 55–59 (2002). https://doi.org/10.1007/s11743-002-0205-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-002-0205-1

Key Words

Navigation