Skip to main content
Log in

Tuning the solubilization behavior of the CTAB/C9OH-C12OH micellar system with quaternary ammonium salts

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper we investigated the effect of quaternary ammonium bromide, R4NBr(R = methyl, ethyl, propyl, butyl) on the micellization of the CTAB/long-chain alcohol (C9OH-C12OH) micellar system using viscosity, rheology, dynamic light scattering (DLS), and cryo-TEM analysis. The results indicates that, apart from concentration (C0), and chain length of alcohol (n), micellar properties of the CTAB/R4NBr/alcohol system showed a strong dependence on alkyl chain length of R4NBr. The viscosity behavior of CTAB/R4NBr with C0 was similar to our previous studied system, CTAB/KBr/alcohol, and is attributed to alcohol induced morphological transition. The viscosity, rheology, and DLS analysis reveal the dependence of n on the micellar growth of the CTAB/R4NBr/alcohol system. The result showed tetra butyl ammonium bromide (Bu4N+) as least effective to induce micellar growth in the CTAB/alcohol system compared to other quaternary ammonium salts. This is discussed on the basis of change in solubilization behavior with the chain length of R4NBr. The cryo-TEM analysis of the CTAB/R4NBr/alcohol micellar system showed vesicles to short rod-like micelle transition on changing R from methyl to butyl, confirming the effectiveness of quaternary ammonium bromide in tuning morphological transition in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duoping Y, Jianxi Z (2016) A light-responsive organo fluid based on reverse worm-like micelles formed from an equi-charged, mixed, anionic gemini surfactant with an azobenzene spacer and a cationic conventional surfactant. Soft Matter 12(17):4044–4051. https://doi.org/10.1039/C6SM00207B

    Article  Google Scholar 

  2. Tao W, Denghui W, Junyan H, Zhiling Z, Haibo Z, Daolu B (2014) Rheological behavior of viscoelastic wormlike micelles in CTAB/SSS/H2O systems. J Disper Sci Technol 35(1):7–13. https://doi.org/10.1080/01932691.2013.769885

    Article  CAS  Google Scholar 

  3. Mary CS, Angelina A, Nora V, Sylviane L, Jaume V (2010) Cholesterol induced CTAB micelle-to-vesicle phase transitions. J Colloid Interface Sci 350(1):110–115. https://doi.org/10.1016/j.jcis.2010.04.069

    Article  Google Scholar 

  4. Yamaira IG, Maria S, Dganit D, Eric WK (2004) Spontaneous vesicle formation and phase behavior in mixtures of an anionic surfactant with imidazoline compounds. Langmuir 20(17):7053–7063. https://doi.org/10.1021/la0493464

    Article  Google Scholar 

  5. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsion. J Chem Soc Faraday Trans 2(4):601–629. https://doi.org/10.1039/F29817700601

    Article  Google Scholar 

  6. Hassan PA, Yakhmi JV (2000) Growth of cationic micelles in the presence of organic additives. Langmuir 16(18):7187–7191. https://doi.org/10.1021/la000517o

    Article  CAS  Google Scholar 

  7. Gokhale GD, Hassan PA, Samant SD (2005) Change in the aggregational character of the cationic surfactant cetyltrimethyl ammonium bromide in the presence of o- and p-nitrophenolates. J Sur Deterg 8(4):319–323. https://doi.org/10.1007/s11743-005-0362-2

    Article  CAS  Google Scholar 

  8. Hassan PA, Raghavan SR, Kaler EW (2002) Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 18(7):2543–2548. https://doi.org/10.1021/la011435i

    Article  CAS  Google Scholar 

  9. Kumar S, Aswal VK, Singh HN, Goyal PS (1994) Growth of sodium dodecyl sulfate micelles in the presence of n-octylamine. Langmuir 10(11):4069–4072. https://doi.org/10.1021/la00023a027

    Article  CAS  Google Scholar 

  10. Kumar S, Naqvi AZ, Kabiruddhin (2000) Micellar morphology in the presence of salts and organic additives. Langmuir 16(12):5252–5256. https://doi.org/10.1021/la991071i

    Article  CAS  Google Scholar 

  11. Kabir-ud-Din, Bansal D, Kumar S (1997) Synergistic effect of salts and organic additives on the micellar association of cetylpyridinium chloride. Langmuir 13:50715075. https://doi.org/10.1021/la961100edfd

    Article  Google Scholar 

  12. Kuperkar K, Patriati A, Putra EGR, Singh K, Marangoni DG, Bahadur P (2012) Microstructural study of cetyltrimethylammonium bromide/1-butanol/salt/water system—SANS and 2D-NOESY analysis. Can J Chem 90(3):314–320. https://doi.org/10.1139/v11-155

    Article  CAS  Google Scholar 

  13. Mata J, Varade D, Ghosh G, Bahadur P (2004) Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate. Colloids Surf A Physicochem Eng Asp 245(1-3):69–73. https://doi.org/10.1016/j.colsurfa.2004.07.009

    Article  CAS  Google Scholar 

  14. Patel J, Varade D, Bahadur P (2004) Effect of tetraalkyl ammonium bromides on the micellar behaviour of ionic and non-ionic surfactants. Indian J Chem 43:715–721 ISSN: 0975-0975

    Google Scholar 

  15. Kumar S, Sharma D, Kabir-ud-Din (2003) Role of quaternary bromides in changing the Solubilization site of n-heptylamine in cationic micellar solutions. J Surfactant Deterg 6(4):339–343. https://doi.org/10.1007/s11743-003-0279-9

    Article  CAS  Google Scholar 

  16. Kumar S, Sharma D, Khan ZA, Kadir-ud-Din (2001) Occurence of cloud points in sodium dodecyl sulphate tetra n-butyl ammonium bromide. Langmuir 17(19):5813–5816. https://doi.org/10.1021/la001428e

    Article  CAS  Google Scholar 

  17. Kumar S, Sharma D, Kadir-ud-Din (2003) Temperature-[salt] compensation for clouding in ionic micellar systems containing sodium dodecyl sulfate and symmetrical quaternary bromides. Langmuir 19(8):3539–3541. https://doi.org/10.1021/la026783e

    Article  CAS  Google Scholar 

  18. Yu ZJ, Xu G (1989) Physicochemical properties of aqueous mixtures of tetrabutylammonium bromide and anionic surfactants. 1. Temperature-induced micellar growth and cloud point phenomenon. J Phys Chem 93(21):7441–7445. https://doi.org/10.1021/j100358a037

    Article  CAS  Google Scholar 

  19. Kumar S, Sharma D, Kabir-ud-Din (2004) Quaternary salts as solubilization site modifiers of organic compounds in anionic micellar solutions. J Surfactant Deterg 7(1):75–79. https://doi.org/10.1007/s11743003-0279-9

    Article  CAS  Google Scholar 

  20. Kumar S, Aswal VK, Goyal PS, Kabir-ud-Din (1998) Micellar growth in the presence of quaternary ammonium salts A SANS study. J ChemSoc Faraday Trans 94(6):761–764. https://doi.org/10.1039/A707590A

    Article  CAS  Google Scholar 

  21. Kumar S, Bansal D, Kabir-ud-Din (1999) Micellar growth in the presence of salts and aromatic hydrocarbons: influence of the nature of the salt. Langmuir 15(15):4960–4965. https://doi.org/10.1021/la980026s

    Article  CAS  Google Scholar 

  22. Kumar S, Naqvi AZ, Kabir-ud-Din (2001) Solubilization-site-dependent micellar morphology: effect of organic additives and quaternary ammonium bromides. Langmuir 17(16):4787–4792. https://doi.org/10.1021/la0101550

    Article  CAS  Google Scholar 

  23. Karayil J, Kumar S, Hassan PA, Talmon Y, Sreejith L (2015) Microstructural transition of aqueous CTAB micelles in the presence of long chain alcohols. RSC Adv 5(16):12434–11244. https://doi.org/10.1039/C4RA10052B

    Article  CAS  Google Scholar 

  24. Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Pet Sci Eng 71(1-2):23–29. https://doi.org/10.1016/j.petrol.2009.12.009

    Article  CAS  Google Scholar 

  25. Kumar GP, Rajeshwarrao P (2011) Non-ionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1(4):208–219. https://doi.org/10.1016/j.apsb.2011.09.002

    Article  Google Scholar 

  26. Zhu X, Rohling R, Filonenko G, Mezari B, Hofmann JP, Asahina S, Emiel JMH (2014) Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. ChemCommun 50(93):14658–14661. https://doi.org/10.1039/C4CC06267A

    CAS  Google Scholar 

  27. Karayil J, Kumar S, Hassan PA, Talmon Y, Tata BVR, Sreejith L (2015) Micellar growth in cetylpyridinium chloride/alcohol system: role of long chain alcohol, electrolyte and surfactant head group. J Surfactant Deterg 19(4):849–860. https://doi.org/10.1007/s11743-016-1826-7

    Article  Google Scholar 

  28. Sreejith L, Parathakkat S, Nair SM, Kumar S, Varma G, Hassan PA, Talmon Y (2010) Octanol triggered self assemblies of the CTAB/KBr system: a microstructural study. J PhysChem B 115(3):464–470. https://doi.org/10.1021/jp1043255

    Google Scholar 

  29. Patel V, Ray D, Singh K, Abezgauz L, Marangoni G, Aswal VK, Bahadur P (2015) 1-Hexanol triggered structural characterization of the worm-like micelle to vesicle transitions in cetyltrimethylammoniumtosylate solutions. RSC Adv 5(107):87758–87768. https://doi.org/10.1039/C5RA14525B

    Article  CAS  Google Scholar 

  30. Kabir-ud-Din, Kumar S, Kirti, Goyal PS (1996) Micellar growth in presence of alcohols and amines: a viscometric study. Langmuir 12(6):1490–1494. https://doi.org/10.1021/la950677d

    Article  CAS  Google Scholar 

  31. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128(20):6669–6675. https://doi.org/10.1021/ja060021e

    Article  CAS  Google Scholar 

  32. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17(2):300–306. https://doi.org/10.1021/la0007933

    Article  CAS  Google Scholar 

  33. Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self assembly in mixtures of anionic and cationic surfactants. Langmuir 18(10):3797–3803. https://doi.org/10.1021/la0115583

    Article  CAS  Google Scholar 

  34. Kalra A, Tugcu N, Cramer SM, Garde S (2001) Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B 105(27):6380–6386. https://doi.org/10.1021/jp010568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. R. G. Joshi (IGCAR), for the help in rheological analysis. Thanks are due to Dr. Ellina Kesselman and Dr. Judith Schmidt (Technion-Israel Institute of Technology) for their help in the cryo-TEM analysis.

Funding

The author JK is grateful to UGC for providing financial assistance (19-12/2010(i) EU-IV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Sreejith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karayil, J., Talmon, Y., P.A., H. et al. Tuning the solubilization behavior of the CTAB/C9OH-C12OH micellar system with quaternary ammonium salts. Colloid Polym Sci 296, 595–606 (2018). https://doi.org/10.1007/s00396-017-4252-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4252-0

Keywords

Navigation